{"title":"法布里-珀罗腔天线系统的可重构频率选择面","authors":"Chanjoon Lee, R. Sainati, Rhonda R. Franklin","doi":"10.1109/APUSNCURSINRSM.2017.8073034","DOIUrl":null,"url":null,"abstract":"This paper presents reconfigurable Fabry-Perot Cavity (FPC) antenna systems to switch one mode to other with respect to near- and far-field performance. The fluidic channel is created and integrated into the FPC system. The channel is filled with air or deionized (DI) water. The fluidic FPC systems are compared to a fixed FPC design without the fluidic housing. Simulation and measurement results are presented and discussed.","PeriodicalId":264754,"journal":{"name":"2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Reconfigurable frequency selective surface for fabry-perot cavity antenna system\",\"authors\":\"Chanjoon Lee, R. Sainati, Rhonda R. Franklin\",\"doi\":\"10.1109/APUSNCURSINRSM.2017.8073034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents reconfigurable Fabry-Perot Cavity (FPC) antenna systems to switch one mode to other with respect to near- and far-field performance. The fluidic channel is created and integrated into the FPC system. The channel is filled with air or deionized (DI) water. The fluidic FPC systems are compared to a fixed FPC design without the fluidic housing. Simulation and measurement results are presented and discussed.\",\"PeriodicalId\":264754,\"journal\":{\"name\":\"2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APUSNCURSINRSM.2017.8073034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APUSNCURSINRSM.2017.8073034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reconfigurable frequency selective surface for fabry-perot cavity antenna system
This paper presents reconfigurable Fabry-Perot Cavity (FPC) antenna systems to switch one mode to other with respect to near- and far-field performance. The fluidic channel is created and integrated into the FPC system. The channel is filled with air or deionized (DI) water. The fluidic FPC systems are compared to a fixed FPC design without the fluidic housing. Simulation and measurement results are presented and discussed.