基于区域划分和滑动窗口的海洋深度序列数据误差检测

S. Hayashi, S. Ono, S. Hosoda, M. Numao, Ken-ichi Fukui
{"title":"基于区域划分和滑动窗口的海洋深度序列数据误差检测","authors":"S. Hayashi, S. Ono, S. Hosoda, M. Numao, Ken-ichi Fukui","doi":"10.1109/ICMLA.2016.0186","DOIUrl":null,"url":null,"abstract":"In the ocean around the world, depth series ocean data of temperature and salinity have being measured. However, it is difficult to discriminate the errors from the normal data since the variation of ocean areas are different. In this research, using hierarchical clustering, we partitioned the ocean into some areas so that the ocean data have the same variation in each area. Then, transforming the ocean data into sets of sliding windows in consideration of depth series, we applied some anomaly detection methodologies. Finally, we succeeded in assigning high anomaly scores on errors that seemed to be normal.","PeriodicalId":356182,"journal":{"name":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Error Detection of Ocean Depth Series Data with Area Partitioning and Using Sliding Window\",\"authors\":\"S. Hayashi, S. Ono, S. Hosoda, M. Numao, Ken-ichi Fukui\",\"doi\":\"10.1109/ICMLA.2016.0186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the ocean around the world, depth series ocean data of temperature and salinity have being measured. However, it is difficult to discriminate the errors from the normal data since the variation of ocean areas are different. In this research, using hierarchical clustering, we partitioned the ocean into some areas so that the ocean data have the same variation in each area. Then, transforming the ocean data into sets of sliding windows in consideration of depth series, we applied some anomaly detection methodologies. Finally, we succeeded in assigning high anomaly scores on errors that seemed to be normal.\",\"PeriodicalId\":356182,\"journal\":{\"name\":\"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2016.0186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2016.0186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在世界各地的海洋中,已经测量了温度和盐度的深度序列海洋数据。然而,由于海洋区域的变化不同,因此很难将误差与正常数据区分开来。在本研究中,我们采用分层聚类的方法,将海洋划分为若干区域,使海洋数据在每个区域具有相同的变化。然后,将海洋数据转换为考虑深度序列的滑动窗口集,应用一些异常检测方法。最后,我们成功地为看似正常的错误分配了高异常分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Error Detection of Ocean Depth Series Data with Area Partitioning and Using Sliding Window
In the ocean around the world, depth series ocean data of temperature and salinity have being measured. However, it is difficult to discriminate the errors from the normal data since the variation of ocean areas are different. In this research, using hierarchical clustering, we partitioned the ocean into some areas so that the ocean data have the same variation in each area. Then, transforming the ocean data into sets of sliding windows in consideration of depth series, we applied some anomaly detection methodologies. Finally, we succeeded in assigning high anomaly scores on errors that seemed to be normal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信