构建面向兽医文本挖掘的症候术语资源

Lenz Furrer, S. Küker, J. Berezowski, H. Posthaus, F. Vial, Fabio Rinaldi
{"title":"构建面向兽医文本挖掘的症候术语资源","authors":"Lenz Furrer, S. Küker, J. Berezowski, H. Posthaus, F. Vial, Fabio Rinaldi","doi":"10.5167/UZH-114496","DOIUrl":null,"url":null,"abstract":"Public health surveillance systems rely on the automated monitoring of large amounts of text. While building a text mining system for veterinary syndromic surveillance, we exploit automatic and semi-automatic methods for terminology construction at different stages. Our approaches include term extraction from free-text, grouping of term variants based on string similarity, and linking to an existing medical ontology.","PeriodicalId":269925,"journal":{"name":"International Conference on Terminology and Artificial Intelligence","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Constructing a Syndromic Terminology Resource for Veterinary Text Mining\",\"authors\":\"Lenz Furrer, S. Küker, J. Berezowski, H. Posthaus, F. Vial, Fabio Rinaldi\",\"doi\":\"10.5167/UZH-114496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Public health surveillance systems rely on the automated monitoring of large amounts of text. While building a text mining system for veterinary syndromic surveillance, we exploit automatic and semi-automatic methods for terminology construction at different stages. Our approaches include term extraction from free-text, grouping of term variants based on string similarity, and linking to an existing medical ontology.\",\"PeriodicalId\":269925,\"journal\":{\"name\":\"International Conference on Terminology and Artificial Intelligence\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Terminology and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5167/UZH-114496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Terminology and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5167/UZH-114496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

公共卫生监测系统依赖于对大量文本的自动监测。在构建兽医综合征监测文本挖掘系统的过程中,我们采用自动化和半自动的方法对不同阶段的术语进行构建。我们的方法包括从自由文本中提取术语,基于字符串相似性对术语变体进行分组,以及链接到现有的医学本体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constructing a Syndromic Terminology Resource for Veterinary Text Mining
Public health surveillance systems rely on the automated monitoring of large amounts of text. While building a text mining system for veterinary syndromic surveillance, we exploit automatic and semi-automatic methods for terminology construction at different stages. Our approaches include term extraction from free-text, grouping of term variants based on string similarity, and linking to an existing medical ontology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信