RWTH阿拉伯语到英语口语翻译系统

Oliver Bender, E. Matusov, Stefan Hahn, Sasa Hasan, Shahram Khadivi, H. Ney
{"title":"RWTH阿拉伯语到英语口语翻译系统","authors":"Oliver Bender, E. Matusov, Stefan Hahn, Sasa Hasan, Shahram Khadivi, H. Ney","doi":"10.1109/ASRU.2007.4430145","DOIUrl":null,"url":null,"abstract":"We present the RWTH phrase-based statistical machine translation system designed for the translation of Arabic speech into English text. This system was used in the Global Autonomous Language Exploitation (GALE) Go/No-Go Translation Evaluation 2007. Using a two-pass approach, we first generate n-best translation candidates and then rerank these candidates using additional models. We give a short review of the decoder as well as of the models used in both passes. We stress the difficulties of spoken language translation, i.e. how to combine the recognition and translation systems and how to compensate for missing punctuation. In addition, we cover our work on domain adaptation for the applied language models. We present translation results for the official GALE 2006 evaluation set and the GALE 2007 development set.","PeriodicalId":371729,"journal":{"name":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"The RWTH Arabic-to-English spoken language translation system\",\"authors\":\"Oliver Bender, E. Matusov, Stefan Hahn, Sasa Hasan, Shahram Khadivi, H. Ney\",\"doi\":\"10.1109/ASRU.2007.4430145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the RWTH phrase-based statistical machine translation system designed for the translation of Arabic speech into English text. This system was used in the Global Autonomous Language Exploitation (GALE) Go/No-Go Translation Evaluation 2007. Using a two-pass approach, we first generate n-best translation candidates and then rerank these candidates using additional models. We give a short review of the decoder as well as of the models used in both passes. We stress the difficulties of spoken language translation, i.e. how to combine the recognition and translation systems and how to compensate for missing punctuation. In addition, we cover our work on domain adaptation for the applied language models. We present translation results for the official GALE 2006 evaluation set and the GALE 2007 development set.\",\"PeriodicalId\":371729,\"journal\":{\"name\":\"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2007.4430145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2007.4430145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

我们提出了一种基于RWTH短语的统计机器翻译系统,用于将阿拉伯语语音翻译成英语文本。该系统被用于2007年全球自主语言开发(GALE) Go/No-Go翻译评估。使用两步方法,我们首先生成n个最佳候选翻译,然后使用其他模型对这些候选翻译进行重新排序。我们给出了一个简短的回顾解码器以及在两个通道中使用的模型。我们强调口语翻译的难点,即如何将识别系统和翻译系统结合起来,以及如何补偿缺失的标点符号。此外,我们还介绍了应用语言模型的领域适应工作。我们介绍了GALE 2006官方评估集和GALE 2007开发集的翻译结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The RWTH Arabic-to-English spoken language translation system
We present the RWTH phrase-based statistical machine translation system designed for the translation of Arabic speech into English text. This system was used in the Global Autonomous Language Exploitation (GALE) Go/No-Go Translation Evaluation 2007. Using a two-pass approach, we first generate n-best translation candidates and then rerank these candidates using additional models. We give a short review of the decoder as well as of the models used in both passes. We stress the difficulties of spoken language translation, i.e. how to combine the recognition and translation systems and how to compensate for missing punctuation. In addition, we cover our work on domain adaptation for the applied language models. We present translation results for the official GALE 2006 evaluation set and the GALE 2007 development set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信