基于Sobolev度量的几何活动轮廓

F. Derraz, A. Taleb-Ahmed, A. Chikh, F. Bereksi-Reguig, A. Pinti
{"title":"基于Sobolev度量的几何活动轮廓","authors":"F. Derraz, A. Taleb-Ahmed, A. Chikh, F. Bereksi-Reguig, A. Pinti","doi":"10.1109/ISSPIT.2008.4775726","DOIUrl":null,"url":null,"abstract":"Recently, a new reformulation of geometric active contour model is introduced by reformulating the gradient flow with Sobolev-type inner products. Classical inner product induces a pathological Riemannian metric on the space of smooth curves. However, there are also undesirable features associated with the gradient flow that this inner product induces. Sobolev metrics induce good regularity properties in gradient flow. The new formulation based Sobolev metric improved segmentation accuracy. We applied successfully the proposed model to synthetic and real MR images. The results drawn by the newer model are compared to expert segmentation and evaluated in term of F-measure.","PeriodicalId":213756,"journal":{"name":"2008 IEEE International Symposium on Signal Processing and Information Technology","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Geometrical Active Contour Based Sobolev Metric\",\"authors\":\"F. Derraz, A. Taleb-Ahmed, A. Chikh, F. Bereksi-Reguig, A. Pinti\",\"doi\":\"10.1109/ISSPIT.2008.4775726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, a new reformulation of geometric active contour model is introduced by reformulating the gradient flow with Sobolev-type inner products. Classical inner product induces a pathological Riemannian metric on the space of smooth curves. However, there are also undesirable features associated with the gradient flow that this inner product induces. Sobolev metrics induce good regularity properties in gradient flow. The new formulation based Sobolev metric improved segmentation accuracy. We applied successfully the proposed model to synthetic and real MR images. The results drawn by the newer model are compared to expert segmentation and evaluated in term of F-measure.\",\"PeriodicalId\":213756,\"journal\":{\"name\":\"2008 IEEE International Symposium on Signal Processing and Information Technology\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Symposium on Signal Processing and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPIT.2008.4775726\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Symposium on Signal Processing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2008.4775726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近,引入了一种新的几何活动轮廓模型的重新表述,即带sobolev型内积的梯度流的重新表述。经典内积在光滑曲线空间上导出病态黎曼度规。然而,也有与这个内积引起的梯度流相关的不良特征。Sobolev指标在梯度流动中具有良好的规律性。基于Sobolev度量的新公式提高了分割精度。我们成功地将该模型应用于合成和真实的MR图像。将新模型所得到的结果与专家分割结果进行了比较,并用f测度对结果进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Geometrical Active Contour Based Sobolev Metric
Recently, a new reformulation of geometric active contour model is introduced by reformulating the gradient flow with Sobolev-type inner products. Classical inner product induces a pathological Riemannian metric on the space of smooth curves. However, there are also undesirable features associated with the gradient flow that this inner product induces. Sobolev metrics induce good regularity properties in gradient flow. The new formulation based Sobolev metric improved segmentation accuracy. We applied successfully the proposed model to synthetic and real MR images. The results drawn by the newer model are compared to expert segmentation and evaluated in term of F-measure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信