时空切片:可视化目标检测器在驾驶视频序列中的性能

Teng-Yok Lee, K. Wittenburg
{"title":"时空切片:可视化目标检测器在驾驶视频序列中的性能","authors":"Teng-Yok Lee, K. Wittenburg","doi":"10.1109/PacificVis.2019.00045","DOIUrl":null,"url":null,"abstract":"Development of object detectors for video in applications such as autonomous driving requires an iterative training process with data that initially requires human labeling. Later stages of development require tuning a large set of parameters that may not have labeled data available. For each training iteration and parameter selection decision, insight is needed into object detector performance. This work presents a visualization method called Space-Time Slicing to assist a human developer in the development of object detectors for driving applications without requiring labeled data. Space-Time Slicing reveals patterns in the detection data that can suggest the presence of false positives and false negatives. It may be used to set such parameters as image pixel size in data preprocessing and confidence thresholds for object classifiers by comparing performance across different conditions.","PeriodicalId":208856,"journal":{"name":"2019 IEEE Pacific Visualization Symposium (PacificVis)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Space-Time Slicing: Visualizing Object Detector Performance in Driving Video Sequences\",\"authors\":\"Teng-Yok Lee, K. Wittenburg\",\"doi\":\"10.1109/PacificVis.2019.00045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Development of object detectors for video in applications such as autonomous driving requires an iterative training process with data that initially requires human labeling. Later stages of development require tuning a large set of parameters that may not have labeled data available. For each training iteration and parameter selection decision, insight is needed into object detector performance. This work presents a visualization method called Space-Time Slicing to assist a human developer in the development of object detectors for driving applications without requiring labeled data. Space-Time Slicing reveals patterns in the detection data that can suggest the presence of false positives and false negatives. It may be used to set such parameters as image pixel size in data preprocessing and confidence thresholds for object classifiers by comparing performance across different conditions.\",\"PeriodicalId\":208856,\"journal\":{\"name\":\"2019 IEEE Pacific Visualization Symposium (PacificVis)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Pacific Visualization Symposium (PacificVis)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PacificVis.2019.00045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PacificVis.2019.00045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在自动驾驶等应用中,视频目标检测器的开发需要一个迭代的训练过程,其中的数据最初需要人工标记。开发的后期阶段需要调优大量可能没有标记数据可用的参数集。对于每次训练迭代和参数选择决策,都需要深入了解目标检测器的性能。这项工作提出了一种称为时空切片的可视化方法,以帮助人类开发人员开发用于驱动应用程序的对象检测器,而不需要标记数据。时空切片揭示了检测数据中的模式,可以提示假阳性和假阴性的存在。它可以通过比较不同条件下的性能来设置数据预处理中的图像像素大小和对象分类器的置信阈值等参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Space-Time Slicing: Visualizing Object Detector Performance in Driving Video Sequences
Development of object detectors for video in applications such as autonomous driving requires an iterative training process with data that initially requires human labeling. Later stages of development require tuning a large set of parameters that may not have labeled data available. For each training iteration and parameter selection decision, insight is needed into object detector performance. This work presents a visualization method called Space-Time Slicing to assist a human developer in the development of object detectors for driving applications without requiring labeled data. Space-Time Slicing reveals patterns in the detection data that can suggest the presence of false positives and false negatives. It may be used to set such parameters as image pixel size in data preprocessing and confidence thresholds for object classifiers by comparing performance across different conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信