网格测深误差估计

Peter Doucette, J. Dolloff, A. Braun, Adam Gurson, C. Read, B. Shapo
{"title":"网格测深误差估计","authors":"Peter Doucette, J. Dolloff, A. Braun, Adam Gurson, C. Read, B. Shapo","doi":"10.1109/AIPR.2015.7444528","DOIUrl":null,"url":null,"abstract":"Estimating the uncertainty or predicted accuracy of gridded products that are generated from historical bathymetric survey data is of high interest to the maritime navigation community. Surface interpolation methods used for gridding survey data in practice are well established. This paper investigates error estimation methods for gridded bathymetry in terms of their practical utility. Of particular interest are: 1) assessing the quality of a prior uncertainty of random error in survey data; 2) the significance of autocorrelated random errors; 3) the relationship between survey point density and propagated or product uncertainty; 4) the computational feasibility of Monte Carlo (MC) methods over large regions; and 5) the value of cross-validation to estimate error in the absence of controlled truth. K-fold cross-validation is used as the basis for performance evaluation of our approach to propagate a priori random errors via MC perturbation with spline-in-tension surface interpolation. Experiments are conducted with test areas in the Norwegian archipelago of Svalbard.","PeriodicalId":440673,"journal":{"name":"2015 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Error estimation for gridded bathymetry\",\"authors\":\"Peter Doucette, J. Dolloff, A. Braun, Adam Gurson, C. Read, B. Shapo\",\"doi\":\"10.1109/AIPR.2015.7444528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimating the uncertainty or predicted accuracy of gridded products that are generated from historical bathymetric survey data is of high interest to the maritime navigation community. Surface interpolation methods used for gridding survey data in practice are well established. This paper investigates error estimation methods for gridded bathymetry in terms of their practical utility. Of particular interest are: 1) assessing the quality of a prior uncertainty of random error in survey data; 2) the significance of autocorrelated random errors; 3) the relationship between survey point density and propagated or product uncertainty; 4) the computational feasibility of Monte Carlo (MC) methods over large regions; and 5) the value of cross-validation to estimate error in the absence of controlled truth. K-fold cross-validation is used as the basis for performance evaluation of our approach to propagate a priori random errors via MC perturbation with spline-in-tension surface interpolation. Experiments are conducted with test areas in the Norwegian archipelago of Svalbard.\",\"PeriodicalId\":440673,\"journal\":{\"name\":\"2015 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIPR.2015.7444528\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2015.7444528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

估算由历史测深数据生成的网格产品的不确定性或预测精度是航海界非常感兴趣的问题。实测数据网格化的曲面插值方法在实践中得到了很好的应用。本文从实际应用的角度对网格测深误差估计方法进行了研究。特别感兴趣的是:1)评估调查数据中随机误差的先验不确定性的质量;2)自相关随机误差的显著性;3)测点密度与传播不确定度或产品不确定度的关系;蒙特卡罗(MC)方法在大范围内的计算可行性;5)在没有控制真值的情况下,交叉验证估计误差的值。K-fold交叉验证被用作性能评估的基础,该方法通过张力样条曲面插值的MC扰动传播先验随机误差。实验是在挪威斯瓦尔巴群岛的试验区进行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Error estimation for gridded bathymetry
Estimating the uncertainty or predicted accuracy of gridded products that are generated from historical bathymetric survey data is of high interest to the maritime navigation community. Surface interpolation methods used for gridding survey data in practice are well established. This paper investigates error estimation methods for gridded bathymetry in terms of their practical utility. Of particular interest are: 1) assessing the quality of a prior uncertainty of random error in survey data; 2) the significance of autocorrelated random errors; 3) the relationship between survey point density and propagated or product uncertainty; 4) the computational feasibility of Monte Carlo (MC) methods over large regions; and 5) the value of cross-validation to estimate error in the absence of controlled truth. K-fold cross-validation is used as the basis for performance evaluation of our approach to propagate a priori random errors via MC perturbation with spline-in-tension surface interpolation. Experiments are conducted with test areas in the Norwegian archipelago of Svalbard.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信