{"title":"nodest:用于Node.js应用程序的选择性回归测试工具","authors":"Yufeng Chen","doi":"10.1109/ICSE-Companion52605.2021.00055","DOIUrl":null,"url":null,"abstract":"Node.js is one of the most popular frameworks for building web applications. As software systems mature, the cost of running their entire regression test suite can become significant. Selective Regression Testing (SRT) is a technique that executes only a subset of tests the regression test suite can detect software failures more efficiently. Previous SRT studies mainly focused on standard desktop applications. Node.js applications are considered hard to perform test reduction because of Node's asynchronous, event-driven programming model and because JavaScript is a dynamic programming language. In this paper, we present NodeSRT, a Selective Regression Testing framework for Node.js applications. By performing static and dynamic analysis, NodeSRT identifies the relationship between changed methods and tests, then reduces the regression test suite to only tests that are affected by the change to improve the execution time of the regression test suite. To evaluate our selection technique, we applied NodeSRT to two open-source projects: Uppy and Simorgh, then compared our approach with the retest-all strategy and current industry-standard SRT technique: Jest OnlyChange. The results demonstrate that NodeSRT correctly selects affected tests based on changes and is 250% faster, 450% more precise than the Jest OnlyChange.","PeriodicalId":136929,"journal":{"name":"2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"NodeSRT: A Selective Regression Testing Tool for Node.js Application\",\"authors\":\"Yufeng Chen\",\"doi\":\"10.1109/ICSE-Companion52605.2021.00055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Node.js is one of the most popular frameworks for building web applications. As software systems mature, the cost of running their entire regression test suite can become significant. Selective Regression Testing (SRT) is a technique that executes only a subset of tests the regression test suite can detect software failures more efficiently. Previous SRT studies mainly focused on standard desktop applications. Node.js applications are considered hard to perform test reduction because of Node's asynchronous, event-driven programming model and because JavaScript is a dynamic programming language. In this paper, we present NodeSRT, a Selective Regression Testing framework for Node.js applications. By performing static and dynamic analysis, NodeSRT identifies the relationship between changed methods and tests, then reduces the regression test suite to only tests that are affected by the change to improve the execution time of the regression test suite. To evaluate our selection technique, we applied NodeSRT to two open-source projects: Uppy and Simorgh, then compared our approach with the retest-all strategy and current industry-standard SRT technique: Jest OnlyChange. The results demonstrate that NodeSRT correctly selects affected tests based on changes and is 250% faster, 450% more precise than the Jest OnlyChange.\",\"PeriodicalId\":136929,\"journal\":{\"name\":\"2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSE-Companion52605.2021.00055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE-Companion52605.2021.00055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
NodeSRT: A Selective Regression Testing Tool for Node.js Application
Node.js is one of the most popular frameworks for building web applications. As software systems mature, the cost of running their entire regression test suite can become significant. Selective Regression Testing (SRT) is a technique that executes only a subset of tests the regression test suite can detect software failures more efficiently. Previous SRT studies mainly focused on standard desktop applications. Node.js applications are considered hard to perform test reduction because of Node's asynchronous, event-driven programming model and because JavaScript is a dynamic programming language. In this paper, we present NodeSRT, a Selective Regression Testing framework for Node.js applications. By performing static and dynamic analysis, NodeSRT identifies the relationship between changed methods and tests, then reduces the regression test suite to only tests that are affected by the change to improve the execution time of the regression test suite. To evaluate our selection technique, we applied NodeSRT to two open-source projects: Uppy and Simorgh, then compared our approach with the retest-all strategy and current industry-standard SRT technique: Jest OnlyChange. The results demonstrate that NodeSRT correctly selects affected tests based on changes and is 250% faster, 450% more precise than the Jest OnlyChange.