弹性系统的通用优化框架

M. Pfetsch, Andreas Schmitt
{"title":"弹性系统的通用优化框架","authors":"M. Pfetsch, Andreas Schmitt","doi":"10.1080/10556788.2022.2142581","DOIUrl":null,"url":null,"abstract":"ABSTRACT This paper addresses the optimal design of resilient systems, in which components can fail. The system can react to failures and its behaviour is described by general mixed integer nonlinear programs, which allows for applications to many (technical) systems. This then leads to a three-level optimization problem. The upper level designs the system minimizing a cost function, the middle level represents worst-case failures of components, i.e. interdicts the system, and the lowest level operates the remaining system. We describe new inequalities that characterize the set of resilient solutions and allow to reformulate the problem. The reformulation can then be solved using a nested branch-and-cut approach. We discuss several improvements, for instance, by taking symmetry into account and strengthening cuts. We demonstrate the effectiveness of our implementation on the optimal design of water networks, robust trusses, and gas networks, in comparison to an approach in which the failure scenarios are directly included into the model.","PeriodicalId":124811,"journal":{"name":"Optimization Methods and Software","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A generic optimization framework for resilient systems\",\"authors\":\"M. Pfetsch, Andreas Schmitt\",\"doi\":\"10.1080/10556788.2022.2142581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT This paper addresses the optimal design of resilient systems, in which components can fail. The system can react to failures and its behaviour is described by general mixed integer nonlinear programs, which allows for applications to many (technical) systems. This then leads to a three-level optimization problem. The upper level designs the system minimizing a cost function, the middle level represents worst-case failures of components, i.e. interdicts the system, and the lowest level operates the remaining system. We describe new inequalities that characterize the set of resilient solutions and allow to reformulate the problem. The reformulation can then be solved using a nested branch-and-cut approach. We discuss several improvements, for instance, by taking symmetry into account and strengthening cuts. We demonstrate the effectiveness of our implementation on the optimal design of water networks, robust trusses, and gas networks, in comparison to an approach in which the failure scenarios are directly included into the model.\",\"PeriodicalId\":124811,\"journal\":{\"name\":\"Optimization Methods and Software\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization Methods and Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10556788.2022.2142581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10556788.2022.2142581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文讨论了弹性系统的优化设计,其中组件可能失效。系统可以对故障作出反应,其行为由一般的混合整数非线性程序描述,这允许应用于许多(技术)系统。这就导致了一个三级优化问题。上层设计使成本函数最小化的系统,中层表示组件的最坏情况故障,即阻断系统,最低层运行剩余的系统。我们描述了具有弹性解决方案特征的新不等式,并允许重新制定问题。然后可以使用嵌套的分支-切断方法来解决重新表述。我们讨论了一些改进,例如,通过考虑对称性和加强切割。与直接将故障场景包含在模型中的方法相比,我们证明了我们在水网络、坚固桁架和燃气网络优化设计方面的实现的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A generic optimization framework for resilient systems
ABSTRACT This paper addresses the optimal design of resilient systems, in which components can fail. The system can react to failures and its behaviour is described by general mixed integer nonlinear programs, which allows for applications to many (technical) systems. This then leads to a three-level optimization problem. The upper level designs the system minimizing a cost function, the middle level represents worst-case failures of components, i.e. interdicts the system, and the lowest level operates the remaining system. We describe new inequalities that characterize the set of resilient solutions and allow to reformulate the problem. The reformulation can then be solved using a nested branch-and-cut approach. We discuss several improvements, for instance, by taking symmetry into account and strengthening cuts. We demonstrate the effectiveness of our implementation on the optimal design of water networks, robust trusses, and gas networks, in comparison to an approach in which the failure scenarios are directly included into the model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信