{"title":"模型检查跟踪事件结构","authors":"P. Madhusudan","doi":"10.1109/LICS.2003.1210077","DOIUrl":null,"url":null,"abstract":"Given regular collection of Mazurkiewicz traces, which can be seen as the behaviors of a finite-state concurrent system, one can associate with it a canonical regular event structure. This event structure is a single (often infinite) structure that captures both the concurrency and conflict information present in the system. We study the problem of model-checking such structures against logics such as first-order logic (FOL), monadic second-order logic (MSOL) and a new logic that lies in between these two called monadic trace logic (MTL). MTL is a fragment of MSOL where the quantification is restricted to sets that are conflict-free. While it is known that model-checking such event structures against MSOL is undecidable, our main results are that FOL and MTL admit effective model-checking procedures. It turns out that FOL captures previously known decidable temporal logics on event structures. MTL is more powerful and can express interesting branching-time properties of event structures, and when restricted to a sequential setting, can express the standard logic CTL over trees.","PeriodicalId":280809,"journal":{"name":"18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings.","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Model-checking trace event structures\",\"authors\":\"P. Madhusudan\",\"doi\":\"10.1109/LICS.2003.1210077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given regular collection of Mazurkiewicz traces, which can be seen as the behaviors of a finite-state concurrent system, one can associate with it a canonical regular event structure. This event structure is a single (often infinite) structure that captures both the concurrency and conflict information present in the system. We study the problem of model-checking such structures against logics such as first-order logic (FOL), monadic second-order logic (MSOL) and a new logic that lies in between these two called monadic trace logic (MTL). MTL is a fragment of MSOL where the quantification is restricted to sets that are conflict-free. While it is known that model-checking such event structures against MSOL is undecidable, our main results are that FOL and MTL admit effective model-checking procedures. It turns out that FOL captures previously known decidable temporal logics on event structures. MTL is more powerful and can express interesting branching-time properties of event structures, and when restricted to a sequential setting, can express the standard logic CTL over trees.\",\"PeriodicalId\":280809,\"journal\":{\"name\":\"18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings.\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.2003.1210077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2003.1210077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Given regular collection of Mazurkiewicz traces, which can be seen as the behaviors of a finite-state concurrent system, one can associate with it a canonical regular event structure. This event structure is a single (often infinite) structure that captures both the concurrency and conflict information present in the system. We study the problem of model-checking such structures against logics such as first-order logic (FOL), monadic second-order logic (MSOL) and a new logic that lies in between these two called monadic trace logic (MTL). MTL is a fragment of MSOL where the quantification is restricted to sets that are conflict-free. While it is known that model-checking such event structures against MSOL is undecidable, our main results are that FOL and MTL admit effective model-checking procedures. It turns out that FOL captures previously known decidable temporal logics on event structures. MTL is more powerful and can express interesting branching-time properties of event structures, and when restricted to a sequential setting, can express the standard logic CTL over trees.