基于嵌入式系统的遥感车辆检测

Haoxiang Su, Z. Dong, Fan Yang, Yu Lin
{"title":"基于嵌入式系统的遥感车辆检测","authors":"Haoxiang Su, Z. Dong, Fan Yang, Yu Lin","doi":"10.1117/12.2588843","DOIUrl":null,"url":null,"abstract":"At present, remote sensing image vehicle detection based on deep learning has achieved certain results, but most of them rely on powerful PC computing power and cannot be deployed in satellites, so they cannot provide support for satellite in-orbit detection. Aiming at this problem, this paper proposes a remote sensing image vehicle detection method based on YOLOv5 model and successfully deploys it in Jetson TX2 embedded equipment that can be deployed on a satellite platform. Experiments have proved that the algorithm proposed in this article detects vehicle targets in a 12000*12000 pixels wide remote sensing image in an embedded device, and the detection time is only about 1 minute and 20 seconds at the fastest.","PeriodicalId":415097,"journal":{"name":"International Conference on Signal Processing Systems","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Remote sensing vehicle detection based on embedded system\",\"authors\":\"Haoxiang Su, Z. Dong, Fan Yang, Yu Lin\",\"doi\":\"10.1117/12.2588843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At present, remote sensing image vehicle detection based on deep learning has achieved certain results, but most of them rely on powerful PC computing power and cannot be deployed in satellites, so they cannot provide support for satellite in-orbit detection. Aiming at this problem, this paper proposes a remote sensing image vehicle detection method based on YOLOv5 model and successfully deploys it in Jetson TX2 embedded equipment that can be deployed on a satellite platform. Experiments have proved that the algorithm proposed in this article detects vehicle targets in a 12000*12000 pixels wide remote sensing image in an embedded device, and the detection time is only about 1 minute and 20 seconds at the fastest.\",\"PeriodicalId\":415097,\"journal\":{\"name\":\"International Conference on Signal Processing Systems\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Signal Processing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2588843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Signal Processing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2588843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

目前,基于深度学习的遥感影像车载检测已经取得了一定的成果,但大多依赖于强大的PC计算能力,无法部署在卫星上,无法为卫星在轨检测提供支持。针对这一问题,本文提出了一种基于YOLOv5模型的遥感影像车辆检测方法,并将其成功部署在可部署在卫星平台上的Jetson TX2嵌入式设备上。实验证明,本文提出的算法在嵌入式设备中对12000*12000像素宽遥感图像中的车辆目标进行检测,检测时间最快仅为1分20秒左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Remote sensing vehicle detection based on embedded system
At present, remote sensing image vehicle detection based on deep learning has achieved certain results, but most of them rely on powerful PC computing power and cannot be deployed in satellites, so they cannot provide support for satellite in-orbit detection. Aiming at this problem, this paper proposes a remote sensing image vehicle detection method based on YOLOv5 model and successfully deploys it in Jetson TX2 embedded equipment that can be deployed on a satellite platform. Experiments have proved that the algorithm proposed in this article detects vehicle targets in a 12000*12000 pixels wide remote sensing image in an embedded device, and the detection time is only about 1 minute and 20 seconds at the fastest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信