基于MCSA和归一化三重协方差的感应电机轴承诊断指标

T. Ciszewski
{"title":"基于MCSA和归一化三重协方差的感应电机轴承诊断指标","authors":"T. Ciszewski","doi":"10.1109/DEMPED.2017.8062401","DOIUrl":null,"url":null,"abstract":"Induction motors are one of the most widely used electrical machines. Statistics of bearing failures of induction motors indicate, that they constitute more than 40% of induction motor damage. Therefore, bearing diagnosis is so important for trouble-free work of induction motors. The most common methods of bearing diagnosis are based on vibration signal analysis. The main disadvantage of those methods is the need for physical access to the diagnosed machine, which is not always possible. Methods based on motor current signature analysis are free of this disadvantage. Preliminary studies have shown that motor current signature analysis based normalized triple covariance is a very good diagnostic indicator for induction motor bearings. This paper presents an attempt to find a more accurate diagnostic indicator based on normalized triple covariance. In this paper the author verifies how many diagnostic features (normalized triple covariances) included in diagnostic indicator can give better separation between healthy and unhealthy cases.","PeriodicalId":325413,"journal":{"name":"2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Induction motor bearings diagnostic indicators based on MCSA and normalized triple covariance\",\"authors\":\"T. Ciszewski\",\"doi\":\"10.1109/DEMPED.2017.8062401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Induction motors are one of the most widely used electrical machines. Statistics of bearing failures of induction motors indicate, that they constitute more than 40% of induction motor damage. Therefore, bearing diagnosis is so important for trouble-free work of induction motors. The most common methods of bearing diagnosis are based on vibration signal analysis. The main disadvantage of those methods is the need for physical access to the diagnosed machine, which is not always possible. Methods based on motor current signature analysis are free of this disadvantage. Preliminary studies have shown that motor current signature analysis based normalized triple covariance is a very good diagnostic indicator for induction motor bearings. This paper presents an attempt to find a more accurate diagnostic indicator based on normalized triple covariance. In this paper the author verifies how many diagnostic features (normalized triple covariances) included in diagnostic indicator can give better separation between healthy and unhealthy cases.\",\"PeriodicalId\":325413,\"journal\":{\"name\":\"2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DEMPED.2017.8062401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEMPED.2017.8062401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

感应电动机是应用最广泛的电机之一。对感应电机轴承故障的统计表明,它们占感应电机损坏的40%以上。因此,轴承诊断对异步电动机的无故障工作至关重要。最常见的轴承诊断方法是基于振动信号分析。这些方法的主要缺点是需要物理访问诊断机器,这并不总是可能的。基于电机电流特征分析的方法没有这个缺点。初步研究表明,基于归一化三协方差的电机电流特征分析是一种很好的感应电机轴承诊断指标。本文提出了一种基于归一化三重协方差的更准确的诊断指标的尝试。本文验证了在诊断指标中包含多少诊断特征(归一化三重协方差)可以更好地区分健康和不健康病例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Induction motor bearings diagnostic indicators based on MCSA and normalized triple covariance
Induction motors are one of the most widely used electrical machines. Statistics of bearing failures of induction motors indicate, that they constitute more than 40% of induction motor damage. Therefore, bearing diagnosis is so important for trouble-free work of induction motors. The most common methods of bearing diagnosis are based on vibration signal analysis. The main disadvantage of those methods is the need for physical access to the diagnosed machine, which is not always possible. Methods based on motor current signature analysis are free of this disadvantage. Preliminary studies have shown that motor current signature analysis based normalized triple covariance is a very good diagnostic indicator for induction motor bearings. This paper presents an attempt to find a more accurate diagnostic indicator based on normalized triple covariance. In this paper the author verifies how many diagnostic features (normalized triple covariances) included in diagnostic indicator can give better separation between healthy and unhealthy cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信