短文本流聚类的自适应Dirichlet多项混合模型

Ruting Duan, Chunping Li
{"title":"短文本流聚类的自适应Dirichlet多项混合模型","authors":"Ruting Duan, Chunping Li","doi":"10.1109/WI.2018.0-108","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an adaptive Dirichlet Multinomial Mixture model for short text clustering along the time slices. A hyperparameters adjusting algorithm is utilized to capture the temporal dynamics automatically, and a collapsed Gibbs sampling algorithm for the extended Dirichlet Multinomial Mixture (DMM) model (e-GSDMM algorithm), is proposed to infer the changes of topic and word distributions along the time slices. Our extensive experiments over three different datasets show that the proposed model is efficient and performs better than the existing GSDMM approach for short text clustering on the streaming data.","PeriodicalId":405966,"journal":{"name":"2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An Adaptive Dirichlet Multinomial Mixture Model for Short Text Streaming Clustering\",\"authors\":\"Ruting Duan, Chunping Li\",\"doi\":\"10.1109/WI.2018.0-108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an adaptive Dirichlet Multinomial Mixture model for short text clustering along the time slices. A hyperparameters adjusting algorithm is utilized to capture the temporal dynamics automatically, and a collapsed Gibbs sampling algorithm for the extended Dirichlet Multinomial Mixture (DMM) model (e-GSDMM algorithm), is proposed to infer the changes of topic and word distributions along the time slices. Our extensive experiments over three different datasets show that the proposed model is efficient and performs better than the existing GSDMM approach for short text clustering on the streaming data.\",\"PeriodicalId\":405966,\"journal\":{\"name\":\"2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI.2018.0-108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2018.0-108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们提出了一种自适应Dirichlet多项式混合模型用于短文本沿时间片聚类。利用超参数调整算法自动捕获时间动态,并提出了扩展Dirichlet多项式混合(DMM)模型的折叠Gibbs采样算法(e-GSDMM算法)来推断话题和单词分布沿时间片的变化。我们在三个不同的数据集上进行的大量实验表明,所提出的模型在流数据上的短文本聚类方面比现有的GSDMM方法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Adaptive Dirichlet Multinomial Mixture Model for Short Text Streaming Clustering
In this paper, we propose an adaptive Dirichlet Multinomial Mixture model for short text clustering along the time slices. A hyperparameters adjusting algorithm is utilized to capture the temporal dynamics automatically, and a collapsed Gibbs sampling algorithm for the extended Dirichlet Multinomial Mixture (DMM) model (e-GSDMM algorithm), is proposed to infer the changes of topic and word distributions along the time slices. Our extensive experiments over three different datasets show that the proposed model is efficient and performs better than the existing GSDMM approach for short text clustering on the streaming data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信