用于提高多级内存层次结构上查询处理性能的通用框架

Bingsheng He, Yinan Li, Qiong Luo, Dongqing Yang
{"title":"用于提高多级内存层次结构上查询处理性能的通用框架","authors":"Bingsheng He, Yinan Li, Qiong Luo, Dongqing Yang","doi":"10.1145/1363189.1363193","DOIUrl":null,"url":null,"abstract":"We propose a general framework for improving the query processing performance on multi-level memory hierarchies. Our motivation is that (1) the memory hierarchy is an important performance factor for query processing, (2) both the memory hierarchy and database systems are becoming increasingly complex and diverse, and (3) increasing the amount of tuning does not always improve the performance. Therefore, we categorize multiple levels of memory performance tuning and quantify their performance impacts. As a case study, we use this framework to improve the in-memory performance of storage models, B+-trees, nested-loop joins and hash joins. Our empirical evaluation verifies the usefulness of the proposed framework.","PeriodicalId":298901,"journal":{"name":"International Workshop on Data Management on New Hardware","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A general framework for improving query processing performance on multi-level memory hierarchies\",\"authors\":\"Bingsheng He, Yinan Li, Qiong Luo, Dongqing Yang\",\"doi\":\"10.1145/1363189.1363193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a general framework for improving the query processing performance on multi-level memory hierarchies. Our motivation is that (1) the memory hierarchy is an important performance factor for query processing, (2) both the memory hierarchy and database systems are becoming increasingly complex and diverse, and (3) increasing the amount of tuning does not always improve the performance. Therefore, we categorize multiple levels of memory performance tuning and quantify their performance impacts. As a case study, we use this framework to improve the in-memory performance of storage models, B+-trees, nested-loop joins and hash joins. Our empirical evaluation verifies the usefulness of the proposed framework.\",\"PeriodicalId\":298901,\"journal\":{\"name\":\"International Workshop on Data Management on New Hardware\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Data Management on New Hardware\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1363189.1363193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Data Management on New Hardware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1363189.1363193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个通用的框架来提高在多级内存层次结构上的查询处理性能。我们的动机是:(1)内存层次结构是查询处理的一个重要性能因素;(2)内存层次结构和数据库系统都变得越来越复杂和多样化;(3)增加调优量并不总是能提高性能。因此,我们对多个级别的内存性能调优进行分类,并量化它们对性能的影响。作为一个案例研究,我们使用这个框架来提高存储模型、B+树、嵌套循环连接和哈希连接的内存性能。我们的实证评估验证了所提出框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A general framework for improving query processing performance on multi-level memory hierarchies
We propose a general framework for improving the query processing performance on multi-level memory hierarchies. Our motivation is that (1) the memory hierarchy is an important performance factor for query processing, (2) both the memory hierarchy and database systems are becoming increasingly complex and diverse, and (3) increasing the amount of tuning does not always improve the performance. Therefore, we categorize multiple levels of memory performance tuning and quantify their performance impacts. As a case study, we use this framework to improve the in-memory performance of storage models, B+-trees, nested-loop joins and hash joins. Our empirical evaluation verifies the usefulness of the proposed framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信