利用模糊逻辑实现灰狼优化器中参数的动态同步自适应

Luis Rodríguez, O. Castillo, Mario García Valdez, J. Soria, F. Valdez, P. Melin
{"title":"利用模糊逻辑实现灰狼优化器中参数的动态同步自适应","authors":"Luis Rodríguez, O. Castillo, Mario García Valdez, J. Soria, F. Valdez, P. Melin","doi":"10.1109/FUZZ-IEEE.2017.8015523","DOIUrl":null,"url":null,"abstract":"The main goal of the work presented in the paper is to introduce the use of fuzzy logic in the Grey Wolf Optimizer (GWO) algorithm specifically for dynamic simultaneous adaptation of the key parameters, which are crucial in the performance of the metaheuristic. The proposed approach for this modification of GWO using fuzzy logic is presented. In addition, a brief comparison between the traditional GWO algorithm and the Grey Wolf Optimizer using fuzzy logic for dynamic adaptation of parameters is reported. This research shows the individual dynamic adjustment of two parameters and then a proposal of how to simultaneously adjust both parameters and finally we present the performance of these methods when they are tested with a set of benchmark functions, showing the advantage of using the strategy of simultaneous adaptation of parameters.","PeriodicalId":408343,"journal":{"name":"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Dynamic simultaneous adaptation of parameters in the grey wolf optimizer using fuzzy logic\",\"authors\":\"Luis Rodríguez, O. Castillo, Mario García Valdez, J. Soria, F. Valdez, P. Melin\",\"doi\":\"10.1109/FUZZ-IEEE.2017.8015523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main goal of the work presented in the paper is to introduce the use of fuzzy logic in the Grey Wolf Optimizer (GWO) algorithm specifically for dynamic simultaneous adaptation of the key parameters, which are crucial in the performance of the metaheuristic. The proposed approach for this modification of GWO using fuzzy logic is presented. In addition, a brief comparison between the traditional GWO algorithm and the Grey Wolf Optimizer using fuzzy logic for dynamic adaptation of parameters is reported. This research shows the individual dynamic adjustment of two parameters and then a proposal of how to simultaneously adjust both parameters and finally we present the performance of these methods when they are tested with a set of benchmark functions, showing the advantage of using the strategy of simultaneous adaptation of parameters.\",\"PeriodicalId\":408343,\"journal\":{\"name\":\"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZ-IEEE.2017.8015523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ-IEEE.2017.8015523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文提出的主要目标是在灰狼优化器(GWO)算法中引入模糊逻辑,专门用于动态同时自适应关键参数,这对元启发式算法的性能至关重要。提出了一种利用模糊逻辑对GWO进行修正的方法。此外,还对传统的GWO算法和采用模糊逻辑进行参数动态自适应的灰狼优化器进行了简要比较。本文首先介绍了两个参数的单独动态调整,然后提出了如何同时调整两个参数的方法,最后用一组基准函数对这些方法进行了测试,显示了使用参数同步自适应策略的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic simultaneous adaptation of parameters in the grey wolf optimizer using fuzzy logic
The main goal of the work presented in the paper is to introduce the use of fuzzy logic in the Grey Wolf Optimizer (GWO) algorithm specifically for dynamic simultaneous adaptation of the key parameters, which are crucial in the performance of the metaheuristic. The proposed approach for this modification of GWO using fuzzy logic is presented. In addition, a brief comparison between the traditional GWO algorithm and the Grey Wolf Optimizer using fuzzy logic for dynamic adaptation of parameters is reported. This research shows the individual dynamic adjustment of two parameters and then a proposal of how to simultaneously adjust both parameters and finally we present the performance of these methods when they are tested with a set of benchmark functions, showing the advantage of using the strategy of simultaneous adaptation of parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信