Tiwonge Msulira Banda, Alexandru-Ciprian Zavoianu, Andrei V. Petrovski, Daniel Wöckinger, G. Bramerdorfer
{"title":"使用线性回归有效地模拟电机动态热行为时,发现可解释性权衡的多目标进化方法","authors":"Tiwonge Msulira Banda, Alexandru-Ciprian Zavoianu, Andrei V. Petrovski, Daniel Wöckinger, G. Bramerdorfer","doi":"10.1145/3597618","DOIUrl":null,"url":null,"abstract":"Modelling and controlling heat transfer in rotating electrical machines is very important as it enables the design of assemblies (e.g., motors) that are efficient and durable under multiple operational scenarios. To address the challenge of deriving accurate data-driven estimators of key motor temperatures, we propose a multi-objective strategy for creating Linear Regression (LR) models that integrate optimised synthetic features. The main strength of our approach is that it provides decision makers with a clear overview of the optimal trade-offs between data collection costs, the expected modelling errors and the overall explainability of the generated thermal models. Moreover, as parsimonious models are required for both microcontroller deployment and domain expert interpretation, our modelling strategy contains a simple but effective step-wise regularisation technique that can be applied to outline domain-relevant mappings between LR variables and thermal profiling capabilities. Results indicate that our approach can generate accurate LR-based dynamic thermal models when training on data associated with a limited set of load points within the safe operating area of the electrical machine under study.","PeriodicalId":220659,"journal":{"name":"ACM Transactions on Evolutionary Learning","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multi-Objective Evolutionary Approach to Discover Explainability Trade-Offs when Using Linear Regression to Effectively Model the Dynamic Thermal Behaviour of Electrical Machines\",\"authors\":\"Tiwonge Msulira Banda, Alexandru-Ciprian Zavoianu, Andrei V. Petrovski, Daniel Wöckinger, G. Bramerdorfer\",\"doi\":\"10.1145/3597618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modelling and controlling heat transfer in rotating electrical machines is very important as it enables the design of assemblies (e.g., motors) that are efficient and durable under multiple operational scenarios. To address the challenge of deriving accurate data-driven estimators of key motor temperatures, we propose a multi-objective strategy for creating Linear Regression (LR) models that integrate optimised synthetic features. The main strength of our approach is that it provides decision makers with a clear overview of the optimal trade-offs between data collection costs, the expected modelling errors and the overall explainability of the generated thermal models. Moreover, as parsimonious models are required for both microcontroller deployment and domain expert interpretation, our modelling strategy contains a simple but effective step-wise regularisation technique that can be applied to outline domain-relevant mappings between LR variables and thermal profiling capabilities. Results indicate that our approach can generate accurate LR-based dynamic thermal models when training on data associated with a limited set of load points within the safe operating area of the electrical machine under study.\",\"PeriodicalId\":220659,\"journal\":{\"name\":\"ACM Transactions on Evolutionary Learning\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Evolutionary Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3597618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Evolutionary Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3597618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Multi-Objective Evolutionary Approach to Discover Explainability Trade-Offs when Using Linear Regression to Effectively Model the Dynamic Thermal Behaviour of Electrical Machines
Modelling and controlling heat transfer in rotating electrical machines is very important as it enables the design of assemblies (e.g., motors) that are efficient and durable under multiple operational scenarios. To address the challenge of deriving accurate data-driven estimators of key motor temperatures, we propose a multi-objective strategy for creating Linear Regression (LR) models that integrate optimised synthetic features. The main strength of our approach is that it provides decision makers with a clear overview of the optimal trade-offs between data collection costs, the expected modelling errors and the overall explainability of the generated thermal models. Moreover, as parsimonious models are required for both microcontroller deployment and domain expert interpretation, our modelling strategy contains a simple but effective step-wise regularisation technique that can be applied to outline domain-relevant mappings between LR variables and thermal profiling capabilities. Results indicate that our approach can generate accurate LR-based dynamic thermal models when training on data associated with a limited set of load points within the safe operating area of the electrical machine under study.