利用CFD研究高超声速再入飞行器中尖峰的最新进展

E. Madhukar, Harish Panjagala
{"title":"利用CFD研究高超声速再入飞行器中尖峰的最新进展","authors":"E. Madhukar, Harish Panjagala","doi":"10.1115/IMECE2018-86550","DOIUrl":null,"url":null,"abstract":"The recent introduction of spike in the frontal region of high speed reentry vehicles has brought a tremendous improvement in space activities in the world. The major issue that the spikes resolves is aero heating of re-entry vehicles. Moreover, it preserves structural integrity and avoids damage. Usage of spike is economical and effective over different kinds of thermal protection system. Previous investigation on spiked re-entry vehicles leads to a conclusion that the Blunt and Snap spikes resulted in better reduction of temperature at nose of re-entry vehicle. This paper deals with geometry optimization of blunt and snap spike specifically the length, which is varied as L/8, L/4 and 3L/8 respectively where L is the length of the vehicle. ANSYS 17.2 FLUENT solver is incorporated for analysis purpose and the results are compared among the three different length spike re-entry vehicles. Modal analysis has also been carried out and natural frequency of spikes are obtained. This would provide a way to accept the safe and economical design with better thermal protection of the high-speed space vehicle.","PeriodicalId":119220,"journal":{"name":"Volume 1: Advances in Aerospace Technology","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Advancements in Spikes Used in Hypersonic Re-Entry Vehicles by Using CFD\",\"authors\":\"E. Madhukar, Harish Panjagala\",\"doi\":\"10.1115/IMECE2018-86550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent introduction of spike in the frontal region of high speed reentry vehicles has brought a tremendous improvement in space activities in the world. The major issue that the spikes resolves is aero heating of re-entry vehicles. Moreover, it preserves structural integrity and avoids damage. Usage of spike is economical and effective over different kinds of thermal protection system. Previous investigation on spiked re-entry vehicles leads to a conclusion that the Blunt and Snap spikes resulted in better reduction of temperature at nose of re-entry vehicle. This paper deals with geometry optimization of blunt and snap spike specifically the length, which is varied as L/8, L/4 and 3L/8 respectively where L is the length of the vehicle. ANSYS 17.2 FLUENT solver is incorporated for analysis purpose and the results are compared among the three different length spike re-entry vehicles. Modal analysis has also been carried out and natural frequency of spikes are obtained. This would provide a way to accept the safe and economical design with better thermal protection of the high-speed space vehicle.\",\"PeriodicalId\":119220,\"journal\":{\"name\":\"Volume 1: Advances in Aerospace Technology\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Advances in Aerospace Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/IMECE2018-86550\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Advances in Aerospace Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-86550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来高速再入飞行器锋面区突刺的引入,使世界空间活动得到了极大的改善。钉钉解决的主要问题是再入飞行器的空气加热。此外,它保持了结构的完整性,避免了损坏。在不同的热保护系统中,使用长钉是经济有效的。以往对尖刺式再入飞行器的研究表明,Blunt和Snap尖刺能更好地降低再入飞行器前端温度。本文主要研究钝钉和短钉的几何优化,特别是长度的优化,分别为L/8、L/4和3L/8,其中L为车辆长度。采用ANSYS 17.2 FLUENT求解器进行分析,并对三种不同长度的长钉再入飞行器的分析结果进行了比较。进行了模态分析,得到了峰值的固有频率。这将为高速空间飞行器提供一种安全、经济且具有较好热防护的设计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent Advancements in Spikes Used in Hypersonic Re-Entry Vehicles by Using CFD
The recent introduction of spike in the frontal region of high speed reentry vehicles has brought a tremendous improvement in space activities in the world. The major issue that the spikes resolves is aero heating of re-entry vehicles. Moreover, it preserves structural integrity and avoids damage. Usage of spike is economical and effective over different kinds of thermal protection system. Previous investigation on spiked re-entry vehicles leads to a conclusion that the Blunt and Snap spikes resulted in better reduction of temperature at nose of re-entry vehicle. This paper deals with geometry optimization of blunt and snap spike specifically the length, which is varied as L/8, L/4 and 3L/8 respectively where L is the length of the vehicle. ANSYS 17.2 FLUENT solver is incorporated for analysis purpose and the results are compared among the three different length spike re-entry vehicles. Modal analysis has also been carried out and natural frequency of spikes are obtained. This would provide a way to accept the safe and economical design with better thermal protection of the high-speed space vehicle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信