基于深度强化学习的使用感知频谱访问方案

Yuto Teraki, Xiaoyan Wang, M. Umehira, Yusheng Ji
{"title":"基于深度强化学习的使用感知频谱访问方案","authors":"Yuto Teraki, Xiaoyan Wang, M. Umehira, Yusheng Ji","doi":"10.1109/wpmc52694.2021.9700468","DOIUrl":null,"url":null,"abstract":"To deal with the spectrum-shortage problem, dynamic spectrum access (DSA) has attracted a great deal of attention in both academia and industry. In DSA, secondary users (SUs) are allowed to exploit the whitespace of the primary users (PUs) on an instant-by-instant basis. The goal is to improve the system’s spectral utilization efficiency in a manner that limits the interference from SUs to PUs. To this end, in this paper, we proposed an usage aware spectrum access scheme by exploiting deep reinforcement learning. We evaluated its performance by extensive simulations, and validate the superiority of the proposed scheme by comparing it with existing methods.","PeriodicalId":299827,"journal":{"name":"2021 24th International Symposium on Wireless Personal Multimedia Communications (WPMC)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Deep Reinforcement Learning based Usage Aware Spectrum Access Scheme\",\"authors\":\"Yuto Teraki, Xiaoyan Wang, M. Umehira, Yusheng Ji\",\"doi\":\"10.1109/wpmc52694.2021.9700468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To deal with the spectrum-shortage problem, dynamic spectrum access (DSA) has attracted a great deal of attention in both academia and industry. In DSA, secondary users (SUs) are allowed to exploit the whitespace of the primary users (PUs) on an instant-by-instant basis. The goal is to improve the system’s spectral utilization efficiency in a manner that limits the interference from SUs to PUs. To this end, in this paper, we proposed an usage aware spectrum access scheme by exploiting deep reinforcement learning. We evaluated its performance by extensive simulations, and validate the superiority of the proposed scheme by comparing it with existing methods.\",\"PeriodicalId\":299827,\"journal\":{\"name\":\"2021 24th International Symposium on Wireless Personal Multimedia Communications (WPMC)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 24th International Symposium on Wireless Personal Multimedia Communications (WPMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/wpmc52694.2021.9700468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 24th International Symposium on Wireless Personal Multimedia Communications (WPMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/wpmc52694.2021.9700468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

为了解决频谱短缺问题,动态频谱接入(DSA)受到了学术界和工业界的广泛关注。在DSA中,允许从用户(su)在瞬间利用主用户(pu)的空白。目标是通过限制来自su的干扰来提高系统的频谱利用效率。为此,在本文中,我们提出了一种利用深度强化学习的使用感知频谱访问方案。我们通过大量的仿真来评估其性能,并通过与现有方法的比较来验证该方案的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Reinforcement Learning based Usage Aware Spectrum Access Scheme
To deal with the spectrum-shortage problem, dynamic spectrum access (DSA) has attracted a great deal of attention in both academia and industry. In DSA, secondary users (SUs) are allowed to exploit the whitespace of the primary users (PUs) on an instant-by-instant basis. The goal is to improve the system’s spectral utilization efficiency in a manner that limits the interference from SUs to PUs. To this end, in this paper, we proposed an usage aware spectrum access scheme by exploiting deep reinforcement learning. We evaluated its performance by extensive simulations, and validate the superiority of the proposed scheme by comparing it with existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信