Evangelos Stromatias, F. Galluppi, Cameron Patterson, S. Furber
{"title":"SpiNNaker上大规模实时神经网络的功率分析","authors":"Evangelos Stromatias, F. Galluppi, Cameron Patterson, S. Furber","doi":"10.1109/IJCNN.2013.6706927","DOIUrl":null,"url":null,"abstract":"Simulating large spiking neural networks is non trivial: supercomputers offer great flexibility at the price of power and communication overheads; custom neuromorphic circuits are more power efficient but less flexible; while alternative approaches based on GPGPUs and FPGAs, whilst being more readily available, show similar model specialization. As well as efficiency and flexibility, real time simulation is a desirable neural network characteristic, for example in cognitive robotics where embodied agents interact with the environment using low-power, event-based neuromorphic sensors. The SpiNNaker neuromimetic architecture has been designed to address these requirements, simulating large-scale heterogeneous models of spiking neurons in real-time, offering a unique combination of flexibility, scalability and power efficiency. In this work a 48-chip board is utilised to generate a SpiNNaker power estimation model, based on numbers of neurons, synapses and their firing rates. In addition, we demonstrate simulations capable of handling up to a quarter of a million neurons, 81 million synapses and 1.8 billion synaptic events per second, with the most complex simulations consuming less than 1 Watt per SpiNNaker chip.","PeriodicalId":376975,"journal":{"name":"The 2013 International Joint Conference on Neural Networks (IJCNN)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"84","resultStr":"{\"title\":\"Power analysis of large-scale, real-time neural networks on SpiNNaker\",\"authors\":\"Evangelos Stromatias, F. Galluppi, Cameron Patterson, S. Furber\",\"doi\":\"10.1109/IJCNN.2013.6706927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simulating large spiking neural networks is non trivial: supercomputers offer great flexibility at the price of power and communication overheads; custom neuromorphic circuits are more power efficient but less flexible; while alternative approaches based on GPGPUs and FPGAs, whilst being more readily available, show similar model specialization. As well as efficiency and flexibility, real time simulation is a desirable neural network characteristic, for example in cognitive robotics where embodied agents interact with the environment using low-power, event-based neuromorphic sensors. The SpiNNaker neuromimetic architecture has been designed to address these requirements, simulating large-scale heterogeneous models of spiking neurons in real-time, offering a unique combination of flexibility, scalability and power efficiency. In this work a 48-chip board is utilised to generate a SpiNNaker power estimation model, based on numbers of neurons, synapses and their firing rates. In addition, we demonstrate simulations capable of handling up to a quarter of a million neurons, 81 million synapses and 1.8 billion synaptic events per second, with the most complex simulations consuming less than 1 Watt per SpiNNaker chip.\",\"PeriodicalId\":376975,\"journal\":{\"name\":\"The 2013 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"84\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2013 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2013.6706927\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2013 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2013.6706927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Power analysis of large-scale, real-time neural networks on SpiNNaker
Simulating large spiking neural networks is non trivial: supercomputers offer great flexibility at the price of power and communication overheads; custom neuromorphic circuits are more power efficient but less flexible; while alternative approaches based on GPGPUs and FPGAs, whilst being more readily available, show similar model specialization. As well as efficiency and flexibility, real time simulation is a desirable neural network characteristic, for example in cognitive robotics where embodied agents interact with the environment using low-power, event-based neuromorphic sensors. The SpiNNaker neuromimetic architecture has been designed to address these requirements, simulating large-scale heterogeneous models of spiking neurons in real-time, offering a unique combination of flexibility, scalability and power efficiency. In this work a 48-chip board is utilised to generate a SpiNNaker power estimation model, based on numbers of neurons, synapses and their firing rates. In addition, we demonstrate simulations capable of handling up to a quarter of a million neurons, 81 million synapses and 1.8 billion synaptic events per second, with the most complex simulations consuming less than 1 Watt per SpiNNaker chip.