基于贝叶斯算法的信息检索系统应用研究

Wang Zhong-sheng, Liang Chen-yan
{"title":"基于贝叶斯算法的信息检索系统应用研究","authors":"Wang Zhong-sheng, Liang Chen-yan","doi":"10.1109/ICNDS.2010.5479245","DOIUrl":null,"url":null,"abstract":"This paper proposes a solution of filtering garbage information, in order to solve the problem of dynamic delivery of documents. The solution balances the technique of Black and White List Spam Filtering, as well as the advantages and disadvantages of and Bayesian Algorithm. It creates the Bayesian Model based on the analysis of probability distributions of Junk key words, as well as design and implement a set of information filtering system. The system implements information filtering accurately and intelligently.","PeriodicalId":403283,"journal":{"name":"2010 International Conference on Networking and Digital Society","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application research for the information searching system based on Bayesian Algorithm\",\"authors\":\"Wang Zhong-sheng, Liang Chen-yan\",\"doi\":\"10.1109/ICNDS.2010.5479245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a solution of filtering garbage information, in order to solve the problem of dynamic delivery of documents. The solution balances the technique of Black and White List Spam Filtering, as well as the advantages and disadvantages of and Bayesian Algorithm. It creates the Bayesian Model based on the analysis of probability distributions of Junk key words, as well as design and implement a set of information filtering system. The system implements information filtering accurately and intelligently.\",\"PeriodicalId\":403283,\"journal\":{\"name\":\"2010 International Conference on Networking and Digital Society\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Networking and Digital Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNDS.2010.5479245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Networking and Digital Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNDS.2010.5479245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了解决文档的动态传递问题,本文提出了一种过滤垃圾信息的解决方案。该解决方案平衡了黑白名单垃圾邮件过滤技术以及贝叶斯算法的优缺点。在分析垃圾关键词概率分布的基础上,建立了贝叶斯模型,设计并实现了一套信息过滤系统。该系统能够准确、智能地实现信息过滤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application research for the information searching system based on Bayesian Algorithm
This paper proposes a solution of filtering garbage information, in order to solve the problem of dynamic delivery of documents. The solution balances the technique of Black and White List Spam Filtering, as well as the advantages and disadvantages of and Bayesian Algorithm. It creates the Bayesian Model based on the analysis of probability distributions of Junk key words, as well as design and implement a set of information filtering system. The system implements information filtering accurately and intelligently.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信