结合KPCA和粒子群算法进行模式去噪

Jianwu Li, Lu Su
{"title":"结合KPCA和粒子群算法进行模式去噪","authors":"Jianwu Li, Lu Su","doi":"10.1109/CCPR.2008.10","DOIUrl":null,"url":null,"abstract":"KPCA based pattern denoising has been addressed. This method, based on machine learning, maps nonlinearly patterns in input space into a higher-dimensional feature space by kernel functions, then performs PCA in feature space to realize pattern denoising. The key difficulty for this method is to seek the pre-image or an approximate pre-image in input space corresponding to the pattern after denoising in feature space. This paper proposes to utilize particle swarm optimization (PSO) algorithms to find pre-images in input space. Some nearest training patterns from the pre-image are selected as the initial group of PSO, then PSO algorithm performs an iterative process to find the pre-image or a best approximate pre-image. Experimental results based on the USPS dataset show that our proposed method outperforms some traditional techniques. Additionally, the PSO-based method is straightforward to understand, and is also easy to realize.","PeriodicalId":292956,"journal":{"name":"2008 Chinese Conference on Pattern Recognition","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Combining KPCA and PSO for Pattern Denoising\",\"authors\":\"Jianwu Li, Lu Su\",\"doi\":\"10.1109/CCPR.2008.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"KPCA based pattern denoising has been addressed. This method, based on machine learning, maps nonlinearly patterns in input space into a higher-dimensional feature space by kernel functions, then performs PCA in feature space to realize pattern denoising. The key difficulty for this method is to seek the pre-image or an approximate pre-image in input space corresponding to the pattern after denoising in feature space. This paper proposes to utilize particle swarm optimization (PSO) algorithms to find pre-images in input space. Some nearest training patterns from the pre-image are selected as the initial group of PSO, then PSO algorithm performs an iterative process to find the pre-image or a best approximate pre-image. Experimental results based on the USPS dataset show that our proposed method outperforms some traditional techniques. Additionally, the PSO-based method is straightforward to understand, and is also easy to realize.\",\"PeriodicalId\":292956,\"journal\":{\"name\":\"2008 Chinese Conference on Pattern Recognition\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Chinese Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCPR.2008.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Chinese Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCPR.2008.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

讨论了基于KPCA的模式去噪问题。该方法基于机器学习,通过核函数将输入空间中的非线性模式映射到高维特征空间中,然后在特征空间中进行主成分分析,实现模式去噪。该方法的关键难点是在特征空间去噪后,在输入空间中寻找与模式相对应的预图像或近似预图像。本文提出利用粒子群优化算法在输入空间中寻找预图像。从预图像中选择一些最接近的训练模式作为PSO的初始组,然后PSO算法进行迭代过程来寻找预图像或最佳近似预图像。基于USPS数据集的实验结果表明,该方法优于传统方法。此外,基于pso的方法易于理解,也易于实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining KPCA and PSO for Pattern Denoising
KPCA based pattern denoising has been addressed. This method, based on machine learning, maps nonlinearly patterns in input space into a higher-dimensional feature space by kernel functions, then performs PCA in feature space to realize pattern denoising. The key difficulty for this method is to seek the pre-image or an approximate pre-image in input space corresponding to the pattern after denoising in feature space. This paper proposes to utilize particle swarm optimization (PSO) algorithms to find pre-images in input space. Some nearest training patterns from the pre-image are selected as the initial group of PSO, then PSO algorithm performs an iterative process to find the pre-image or a best approximate pre-image. Experimental results based on the USPS dataset show that our proposed method outperforms some traditional techniques. Additionally, the PSO-based method is straightforward to understand, and is also easy to realize.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信