基于深度学习的智能电网虚假数据注入攻击混合检测模型

Hang Yang, Ruijia Cao, Huan Pan, Jiayi Jin
{"title":"基于深度学习的智能电网虚假数据注入攻击混合检测模型","authors":"Hang Yang, Ruijia Cao, Huan Pan, Jiayi Jin","doi":"10.1109/ICPS58381.2023.10127988","DOIUrl":null,"url":null,"abstract":"As a stealthy cyber attack, false data injection attack (FDIA) can bypass the traditional bad data detection module to threaten the security and economics of smart grids. The uncertainties of renewable energy, power loads, and network parameters perturbations can cause a lot of noise and errors in the measurement data. Therefore, this paper proposes an FDIA detection method combining the principal component analysis (PCA) and convolutional neural network (CNN) to improve the detection accuracy and speed. PCA achieves dimensionality and noise reductions of the high-dimensional characteristic measure-ment data and retains the original data's complete information. Inspired by deep learning research results, CNN is used as a classifier to perform translation-invariant classification on the dimensionality-reduced quantitative measurement data. Some simulation results on IEEE bus systems have been presented to show that the detection method proposed has high accuracy compared with other traditional strategies.","PeriodicalId":426122,"journal":{"name":"2023 IEEE 6th International Conference on Industrial Cyber-Physical Systems (ICPS)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning-based hybrid detection model for false data injection attacks in smart grid\",\"authors\":\"Hang Yang, Ruijia Cao, Huan Pan, Jiayi Jin\",\"doi\":\"10.1109/ICPS58381.2023.10127988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a stealthy cyber attack, false data injection attack (FDIA) can bypass the traditional bad data detection module to threaten the security and economics of smart grids. The uncertainties of renewable energy, power loads, and network parameters perturbations can cause a lot of noise and errors in the measurement data. Therefore, this paper proposes an FDIA detection method combining the principal component analysis (PCA) and convolutional neural network (CNN) to improve the detection accuracy and speed. PCA achieves dimensionality and noise reductions of the high-dimensional characteristic measure-ment data and retains the original data's complete information. Inspired by deep learning research results, CNN is used as a classifier to perform translation-invariant classification on the dimensionality-reduced quantitative measurement data. Some simulation results on IEEE bus systems have been presented to show that the detection method proposed has high accuracy compared with other traditional strategies.\",\"PeriodicalId\":426122,\"journal\":{\"name\":\"2023 IEEE 6th International Conference on Industrial Cyber-Physical Systems (ICPS)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 6th International Conference on Industrial Cyber-Physical Systems (ICPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPS58381.2023.10127988\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 6th International Conference on Industrial Cyber-Physical Systems (ICPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPS58381.2023.10127988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

虚假数据注入攻击(false data injection attack, FDIA)是一种隐蔽的网络攻击,可以绕过传统的不良数据检测模块,威胁智能电网的安全性和经济性。可再生能源的不确定性、电力负荷的不确定性以及电网参数的扰动会导致测量数据产生大量的噪声和误差。为此,本文提出了一种结合主成分分析(PCA)和卷积神经网络(CNN)的FDIA检测方法,以提高检测精度和速度。PCA实现了对高维特征测量数据的降维和降噪,并保留了原始数据的完整信息。受深度学习研究成果的启发,采用CNN作为分类器,对降维的定量测量数据进行平移不变分类。在IEEE总线系统上的仿真结果表明,与其他传统检测策略相比,该方法具有较高的检测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning-based hybrid detection model for false data injection attacks in smart grid
As a stealthy cyber attack, false data injection attack (FDIA) can bypass the traditional bad data detection module to threaten the security and economics of smart grids. The uncertainties of renewable energy, power loads, and network parameters perturbations can cause a lot of noise and errors in the measurement data. Therefore, this paper proposes an FDIA detection method combining the principal component analysis (PCA) and convolutional neural network (CNN) to improve the detection accuracy and speed. PCA achieves dimensionality and noise reductions of the high-dimensional characteristic measure-ment data and retains the original data's complete information. Inspired by deep learning research results, CNN is used as a classifier to perform translation-invariant classification on the dimensionality-reduced quantitative measurement data. Some simulation results on IEEE bus systems have been presented to show that the detection method proposed has high accuracy compared with other traditional strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信