基于多目标优化进化算法的无线传感器节点重新部署

Rungrote Kuawattanaphan, Teerawat Kumrai, P. Champrasert
{"title":"基于多目标优化进化算法的无线传感器节点重新部署","authors":"Rungrote Kuawattanaphan, Teerawat Kumrai, P. Champrasert","doi":"10.1109/TENCON.2013.6719022","DOIUrl":null,"url":null,"abstract":"This paper proposes to apply a multiobjective optimization evolutionary algorithm in wireless sensor node redeployment process to improve network lifetime and sensing coverage. The multiobjective optimization uses a population of individuals, each of which represents a set of wireless sensor node positions, and evolves them via the genetic operations for seeking optimal sensing coverage and network lifetime. The data transmission success rate and the total moving cost are also added as constraints. Simulation results show that the proposed multiobjective optimization evolutionary algorithm outperforms a well-known existing evolutionary algorithm for multiobjective optimization.","PeriodicalId":425023,"journal":{"name":"2013 IEEE International Conference of IEEE Region 10 (TENCON 2013)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Wireless sensor nodes redeployment using a multiobjective optimization evolutionary algorithm\",\"authors\":\"Rungrote Kuawattanaphan, Teerawat Kumrai, P. Champrasert\",\"doi\":\"10.1109/TENCON.2013.6719022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes to apply a multiobjective optimization evolutionary algorithm in wireless sensor node redeployment process to improve network lifetime and sensing coverage. The multiobjective optimization uses a population of individuals, each of which represents a set of wireless sensor node positions, and evolves them via the genetic operations for seeking optimal sensing coverage and network lifetime. The data transmission success rate and the total moving cost are also added as constraints. Simulation results show that the proposed multiobjective optimization evolutionary algorithm outperforms a well-known existing evolutionary algorithm for multiobjective optimization.\",\"PeriodicalId\":425023,\"journal\":{\"name\":\"2013 IEEE International Conference of IEEE Region 10 (TENCON 2013)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference of IEEE Region 10 (TENCON 2013)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCON.2013.6719022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference of IEEE Region 10 (TENCON 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2013.6719022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文提出将多目标优化进化算法应用于无线传感器节点重新部署过程中,以提高网络寿命和感知覆盖。多目标优化使用一组个体,每个个体代表一组无线传感器节点位置,并通过遗传操作对它们进行进化,以寻求最优的感知覆盖和网络寿命。并以数据传输成功率和总移动成本为约束条件。仿真结果表明,所提出的多目标优化进化算法优于现有的多目标优化进化算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wireless sensor nodes redeployment using a multiobjective optimization evolutionary algorithm
This paper proposes to apply a multiobjective optimization evolutionary algorithm in wireless sensor node redeployment process to improve network lifetime and sensing coverage. The multiobjective optimization uses a population of individuals, each of which represents a set of wireless sensor node positions, and evolves them via the genetic operations for seeking optimal sensing coverage and network lifetime. The data transmission success rate and the total moving cost are also added as constraints. Simulation results show that the proposed multiobjective optimization evolutionary algorithm outperforms a well-known existing evolutionary algorithm for multiobjective optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信