{"title":"Ustc address -m挑战系统","authors":"Kangdi Mei, Xinyun Ding, Yinlong Liu, Zhiqiang Guo, Feiyang Xu, Xin Li, Tuya Naren, Jiahong Yuan, Zhenhua Ling","doi":"10.1109/ICASSP49357.2023.10094714","DOIUrl":null,"url":null,"abstract":"This paper describes our submission to the ICASSP 2023 Signal Processing Grand Challenge (SPGC), which focuses on multilingual Alzheimer’s disease (AD) recognition through spontaneous speech. Our approaches include using a variety of acoustic features and silence-related information for AD detection and mini-mental state examination (MMSE) score prediction, and fine-tuning wav2vec2.0 models on speech in various frequency bands for AD detection. Our overall results on the test data outperform the baseline provided by the organizers, achieving 73.9% accuracy in AD detection by fine-tuning our bilingual wav2vec2.0 pre-trained model on the 0-1000Hz frequency band speech, and 4.610 RMSE (r = 0.565) in MMSE prediction through the fusion of eGeMAPS and silence features.","PeriodicalId":113072,"journal":{"name":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Ustc System for Adress-m Challenge\",\"authors\":\"Kangdi Mei, Xinyun Ding, Yinlong Liu, Zhiqiang Guo, Feiyang Xu, Xin Li, Tuya Naren, Jiahong Yuan, Zhenhua Ling\",\"doi\":\"10.1109/ICASSP49357.2023.10094714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes our submission to the ICASSP 2023 Signal Processing Grand Challenge (SPGC), which focuses on multilingual Alzheimer’s disease (AD) recognition through spontaneous speech. Our approaches include using a variety of acoustic features and silence-related information for AD detection and mini-mental state examination (MMSE) score prediction, and fine-tuning wav2vec2.0 models on speech in various frequency bands for AD detection. Our overall results on the test data outperform the baseline provided by the organizers, achieving 73.9% accuracy in AD detection by fine-tuning our bilingual wav2vec2.0 pre-trained model on the 0-1000Hz frequency band speech, and 4.610 RMSE (r = 0.565) in MMSE prediction through the fusion of eGeMAPS and silence features.\",\"PeriodicalId\":113072,\"journal\":{\"name\":\"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP49357.2023.10094714\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP49357.2023.10094714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper describes our submission to the ICASSP 2023 Signal Processing Grand Challenge (SPGC), which focuses on multilingual Alzheimer’s disease (AD) recognition through spontaneous speech. Our approaches include using a variety of acoustic features and silence-related information for AD detection and mini-mental state examination (MMSE) score prediction, and fine-tuning wav2vec2.0 models on speech in various frequency bands for AD detection. Our overall results on the test data outperform the baseline provided by the organizers, achieving 73.9% accuracy in AD detection by fine-tuning our bilingual wav2vec2.0 pre-trained model on the 0-1000Hz frequency band speech, and 4.610 RMSE (r = 0.565) in MMSE prediction through the fusion of eGeMAPS and silence features.