Ustc address -m挑战系统

Kangdi Mei, Xinyun Ding, Yinlong Liu, Zhiqiang Guo, Feiyang Xu, Xin Li, Tuya Naren, Jiahong Yuan, Zhenhua Ling
{"title":"Ustc address -m挑战系统","authors":"Kangdi Mei, Xinyun Ding, Yinlong Liu, Zhiqiang Guo, Feiyang Xu, Xin Li, Tuya Naren, Jiahong Yuan, Zhenhua Ling","doi":"10.1109/ICASSP49357.2023.10094714","DOIUrl":null,"url":null,"abstract":"This paper describes our submission to the ICASSP 2023 Signal Processing Grand Challenge (SPGC), which focuses on multilingual Alzheimer’s disease (AD) recognition through spontaneous speech. Our approaches include using a variety of acoustic features and silence-related information for AD detection and mini-mental state examination (MMSE) score prediction, and fine-tuning wav2vec2.0 models on speech in various frequency bands for AD detection. Our overall results on the test data outperform the baseline provided by the organizers, achieving 73.9% accuracy in AD detection by fine-tuning our bilingual wav2vec2.0 pre-trained model on the 0-1000Hz frequency band speech, and 4.610 RMSE (r = 0.565) in MMSE prediction through the fusion of eGeMAPS and silence features.","PeriodicalId":113072,"journal":{"name":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Ustc System for Adress-m Challenge\",\"authors\":\"Kangdi Mei, Xinyun Ding, Yinlong Liu, Zhiqiang Guo, Feiyang Xu, Xin Li, Tuya Naren, Jiahong Yuan, Zhenhua Ling\",\"doi\":\"10.1109/ICASSP49357.2023.10094714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes our submission to the ICASSP 2023 Signal Processing Grand Challenge (SPGC), which focuses on multilingual Alzheimer’s disease (AD) recognition through spontaneous speech. Our approaches include using a variety of acoustic features and silence-related information for AD detection and mini-mental state examination (MMSE) score prediction, and fine-tuning wav2vec2.0 models on speech in various frequency bands for AD detection. Our overall results on the test data outperform the baseline provided by the organizers, achieving 73.9% accuracy in AD detection by fine-tuning our bilingual wav2vec2.0 pre-trained model on the 0-1000Hz frequency band speech, and 4.610 RMSE (r = 0.565) in MMSE prediction through the fusion of eGeMAPS and silence features.\",\"PeriodicalId\":113072,\"journal\":{\"name\":\"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP49357.2023.10094714\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP49357.2023.10094714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文描述了我们向ICASSP 2023信号处理大挑战(SPGC)提交的论文,该挑战侧重于通过自发语音识别多语言阿尔茨海默病(AD)。我们的方法包括使用各种声学特征和与沉默相关的信息进行AD检测和迷你精神状态检查(MMSE)评分预测,并对不同频段的语音进行wav2vec2.0模型微调以用于AD检测。我们在测试数据上的总体结果优于主办方提供的基线,在0-1000Hz频带语音上对双语wav2vec2.0预训练模型进行微调,AD检测准确率达到73.9%,通过融合eGeMAPS和沉默特征,MMSE预测准确率达到4.610 RMSE (r = 0.565)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Ustc System for Adress-m Challenge
This paper describes our submission to the ICASSP 2023 Signal Processing Grand Challenge (SPGC), which focuses on multilingual Alzheimer’s disease (AD) recognition through spontaneous speech. Our approaches include using a variety of acoustic features and silence-related information for AD detection and mini-mental state examination (MMSE) score prediction, and fine-tuning wav2vec2.0 models on speech in various frequency bands for AD detection. Our overall results on the test data outperform the baseline provided by the organizers, achieving 73.9% accuracy in AD detection by fine-tuning our bilingual wav2vec2.0 pre-trained model on the 0-1000Hz frequency band speech, and 4.610 RMSE (r = 0.565) in MMSE prediction through the fusion of eGeMAPS and silence features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信