差分方程的柯西问题解的傅里叶级数在梅克纳-索博列夫多项式中的表示

R. Gadzhimirzaev, M. Sultanakhmedov
{"title":"差分方程的柯西问题解的傅里叶级数在梅克纳-索博列夫多项式中的表示","authors":"R. Gadzhimirzaev, M. Sultanakhmedov","doi":"10.31029/demr.16.6","DOIUrl":null,"url":null,"abstract":"We obtain a representation of the solution to the Cauchy problem for the $r$-th order difference equation with constant coefficients and given initial conditions at the point $x=0$. This representation is based on the expansion of the solution in the Fourier series by polynomials that are orthogonal in the sense of Sobolev on the grid $\\{0, 1, \\ldots\\}$ and generated by the classical Meixner polynomials. In addition, an algorithm for numerical finding of the unknown coefficients in this expansion has been developed.","PeriodicalId":431345,"journal":{"name":"Daghestan Electronic Mathematical Reports","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Representation of the solution of the Cauchy problem for a difference equation by a Fourier series in Meixner - Sobolev polynomials\",\"authors\":\"R. Gadzhimirzaev, M. Sultanakhmedov\",\"doi\":\"10.31029/demr.16.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain a representation of the solution to the Cauchy problem for the $r$-th order difference equation with constant coefficients and given initial conditions at the point $x=0$. This representation is based on the expansion of the solution in the Fourier series by polynomials that are orthogonal in the sense of Sobolev on the grid $\\\\{0, 1, \\\\ldots\\\\}$ and generated by the classical Meixner polynomials. In addition, an algorithm for numerical finding of the unknown coefficients in this expansion has been developed.\",\"PeriodicalId\":431345,\"journal\":{\"name\":\"Daghestan Electronic Mathematical Reports\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Daghestan Electronic Mathematical Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31029/demr.16.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Daghestan Electronic Mathematical Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31029/demr.16.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们得到了r阶常系数差分方程在x=0处的柯西问题解的一个表示形式。这种表示是基于傅立叶级数解的展开,这些多项式在网格$\{0,1,\ldots\}$上的Sobolev意义上是正交的,并由经典的Meixner多项式生成。此外,本文还提出了一种求解该展开式中未知系数的数值算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Representation of the solution of the Cauchy problem for a difference equation by a Fourier series in Meixner - Sobolev polynomials
We obtain a representation of the solution to the Cauchy problem for the $r$-th order difference equation with constant coefficients and given initial conditions at the point $x=0$. This representation is based on the expansion of the solution in the Fourier series by polynomials that are orthogonal in the sense of Sobolev on the grid $\{0, 1, \ldots\}$ and generated by the classical Meixner polynomials. In addition, an algorithm for numerical finding of the unknown coefficients in this expansion has been developed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信