用于监督机器学习的扰动调节核回归量

S. Kung, Pei-Yuan Wu
{"title":"用于监督机器学习的扰动调节核回归量","authors":"S. Kung, Pei-Yuan Wu","doi":"10.1109/MLSP.2012.6349743","DOIUrl":null,"url":null,"abstract":"This paper develops a kernel perturbation-regulated (KPR) regressor based on the errors-in-variables models. KPR offers a strong smoothing capability critical to the robustness of regression or classification results. For Gaussian cases, the notion of orthogonal polynomials is instrumental to optimal estimation and its error analysis. More exactly, the regressor may be expressed as a linear combination of many simple Hermite Regressors, each focusing on one (and only one) orthogonal polynomial. For Gaussian or non-Gaussian cases, this paper formally establishes a “Two-Projection Theorem” allowing the estimation task to be divided into two projection stages: the first projection reveals the effect of model-induced error (caused by under-represented regressor models) while the second projection reveals the extra estimation error due to the (inevitable) input measuring error. The two-projection analysis leads to a closed-form error formula critical for order/error tradeoff. The simulation results not only confirm the theoretical prediction but also demonstrate superiority of KPR over the conventional ridge regression method in MSE reduction.","PeriodicalId":262601,"journal":{"name":"2012 IEEE International Workshop on Machine Learning for Signal Processing","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Perturbation regulated kernel regressors for supervised machine learning\",\"authors\":\"S. Kung, Pei-Yuan Wu\",\"doi\":\"10.1109/MLSP.2012.6349743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper develops a kernel perturbation-regulated (KPR) regressor based on the errors-in-variables models. KPR offers a strong smoothing capability critical to the robustness of regression or classification results. For Gaussian cases, the notion of orthogonal polynomials is instrumental to optimal estimation and its error analysis. More exactly, the regressor may be expressed as a linear combination of many simple Hermite Regressors, each focusing on one (and only one) orthogonal polynomial. For Gaussian or non-Gaussian cases, this paper formally establishes a “Two-Projection Theorem” allowing the estimation task to be divided into two projection stages: the first projection reveals the effect of model-induced error (caused by under-represented regressor models) while the second projection reveals the extra estimation error due to the (inevitable) input measuring error. The two-projection analysis leads to a closed-form error formula critical for order/error tradeoff. The simulation results not only confirm the theoretical prediction but also demonstrate superiority of KPR over the conventional ridge regression method in MSE reduction.\",\"PeriodicalId\":262601,\"journal\":{\"name\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2012.6349743\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Workshop on Machine Learning for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2012.6349743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于误差变量模型的核扰动调节回归量。KPR提供了强大的平滑能力,这对回归或分类结果的鲁棒性至关重要。对于高斯情况,正交多项式的概念有助于最优估计及其误差分析。更确切地说,回归量可以表示为许多简单的Hermite回归量的线性组合,每个回归量都关注一个(且只有一个)正交多项式。对于高斯或非高斯情况,本文正式建立了一个“双投影定理”,允许估计任务分为两个投影阶段:第一个投影揭示了模型诱导误差(由代表性不足的回归模型引起)的影响,而第二个投影揭示了由于(不可避免的)输入测量误差造成的额外估计误差。双投影分析导致一个封闭形式的误差公式,关键的订单/误差权衡。仿真结果不仅证实了理论预测,而且证明了KPR方法在降低MSE方面优于传统脊回归方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Perturbation regulated kernel regressors for supervised machine learning
This paper develops a kernel perturbation-regulated (KPR) regressor based on the errors-in-variables models. KPR offers a strong smoothing capability critical to the robustness of regression or classification results. For Gaussian cases, the notion of orthogonal polynomials is instrumental to optimal estimation and its error analysis. More exactly, the regressor may be expressed as a linear combination of many simple Hermite Regressors, each focusing on one (and only one) orthogonal polynomial. For Gaussian or non-Gaussian cases, this paper formally establishes a “Two-Projection Theorem” allowing the estimation task to be divided into two projection stages: the first projection reveals the effect of model-induced error (caused by under-represented regressor models) while the second projection reveals the extra estimation error due to the (inevitable) input measuring error. The two-projection analysis leads to a closed-form error formula critical for order/error tradeoff. The simulation results not only confirm the theoretical prediction but also demonstrate superiority of KPR over the conventional ridge regression method in MSE reduction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信