异构环境下的启发式查询优化方法

P. Beran, W. Mach, R. Vigne, Juergen Mangler, E. Schikuta
{"title":"异构环境下的启发式查询优化方法","authors":"P. Beran, W. Mach, R. Vigne, Juergen Mangler, E. Schikuta","doi":"10.1109/CCGRID.2010.65","DOIUrl":null,"url":null,"abstract":"In a rapidly growing digital world the ability to discover, query and access data efficiently is one of the major challenges we are struggling today. Google has done a tremendous job by enabling casual users to easily and efficiently search for Web documents of interest. However, a comparable mechanism to query data stocks located in distributed databases is not available yet. Therefore our research focuses on the query optimization of distributed database queries, considering a huge variety on different infrastructures and algorithms. This paper introduces a novel heuristic query optimization approach based on a multi-layered blackboard mechanism. Moreover, a short evaluation scenario proofs our investigations that even small changes in the structure of a query execution tree (QET) can lead to significant performance improvements.","PeriodicalId":444485,"journal":{"name":"2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Heuristic Query Optimization Approach for Heterogeneous Environments\",\"authors\":\"P. Beran, W. Mach, R. Vigne, Juergen Mangler, E. Schikuta\",\"doi\":\"10.1109/CCGRID.2010.65\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a rapidly growing digital world the ability to discover, query and access data efficiently is one of the major challenges we are struggling today. Google has done a tremendous job by enabling casual users to easily and efficiently search for Web documents of interest. However, a comparable mechanism to query data stocks located in distributed databases is not available yet. Therefore our research focuses on the query optimization of distributed database queries, considering a huge variety on different infrastructures and algorithms. This paper introduces a novel heuristic query optimization approach based on a multi-layered blackboard mechanism. Moreover, a short evaluation scenario proofs our investigations that even small changes in the structure of a query execution tree (QET) can lead to significant performance improvements.\",\"PeriodicalId\":444485,\"journal\":{\"name\":\"2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGRID.2010.65\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2010.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在快速发展的数字世界中,有效地发现、查询和访问数据的能力是我们今天面临的主要挑战之一。Google做了大量工作,使普通用户能够轻松有效地搜索感兴趣的Web文档。但是,目前还没有一种可比较的机制来查询位于分布式数据库中的数据存储。因此,我们的研究重点是分布式数据库查询的查询优化,考虑到不同基础设施和算法的巨大差异。介绍了一种基于多层黑板机制的启发式查询优化方法。此外,一个简短的评估场景证明了我们的调查,即使是查询执行树(QET)结构的微小变化也会导致显著的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Heuristic Query Optimization Approach for Heterogeneous Environments
In a rapidly growing digital world the ability to discover, query and access data efficiently is one of the major challenges we are struggling today. Google has done a tremendous job by enabling casual users to easily and efficiently search for Web documents of interest. However, a comparable mechanism to query data stocks located in distributed databases is not available yet. Therefore our research focuses on the query optimization of distributed database queries, considering a huge variety on different infrastructures and algorithms. This paper introduces a novel heuristic query optimization approach based on a multi-layered blackboard mechanism. Moreover, a short evaluation scenario proofs our investigations that even small changes in the structure of a query execution tree (QET) can lead to significant performance improvements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信