单导联心电图检测睡眠呼吸暂停:深度学习算法的比较

Mahsa Bahrami, M. Forouzanfar
{"title":"单导联心电图检测睡眠呼吸暂停:深度学习算法的比较","authors":"Mahsa Bahrami, M. Forouzanfar","doi":"10.1109/MeMeA52024.2021.9478745","DOIUrl":null,"url":null,"abstract":"Apnea is a prevalent sleep disorder which has detrimental impacts on human health and quality of life. Accurate automatic algorithms for the detection of sleep apnea are needed for analyzing long-term sleep data and monitoring and management of its side effects and consequences. Among different approaches for automatic detection of sleep apnea from biosignals, deep learning algorithms are of particular interest as, unlike conventional machine learning algorithms, they do not rely on expert crafted features. In this paper, we developed and evaluated a number of different deep learning models for the detection of sleep apnea from a single-lead electrocardiogram (ECG) signal. ECG R-peak amplitude and R-R intervals were extracted, and power spectral analysis was performed to align the R-peak amplitude and the R-R intervals in frequency domain. Convolutional neural network (CNN), long short-term memory (LSTM), bidirectional LSTM, gated recurrent unit, and deep hybrid models were implemented and analyzed. The performance of deep learning algorithms was evaluated on an apnea-ECG dataset of 70 recordings divided into a learning set of 35 records and a test of 35 records. The best accuracy, sensitivity, specificity, and F1-score on the test data were 80.67%, 75.04%, 84.13%, and 74.72%, respectively, with a hybrid CNN and LSTM network. The results show promise toward improved apnea detection using deep learning.","PeriodicalId":429222,"journal":{"name":"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Detection of Sleep Apnea from Single-Lead ECG: Comparison of Deep Learning Algorithms\",\"authors\":\"Mahsa Bahrami, M. Forouzanfar\",\"doi\":\"10.1109/MeMeA52024.2021.9478745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Apnea is a prevalent sleep disorder which has detrimental impacts on human health and quality of life. Accurate automatic algorithms for the detection of sleep apnea are needed for analyzing long-term sleep data and monitoring and management of its side effects and consequences. Among different approaches for automatic detection of sleep apnea from biosignals, deep learning algorithms are of particular interest as, unlike conventional machine learning algorithms, they do not rely on expert crafted features. In this paper, we developed and evaluated a number of different deep learning models for the detection of sleep apnea from a single-lead electrocardiogram (ECG) signal. ECG R-peak amplitude and R-R intervals were extracted, and power spectral analysis was performed to align the R-peak amplitude and the R-R intervals in frequency domain. Convolutional neural network (CNN), long short-term memory (LSTM), bidirectional LSTM, gated recurrent unit, and deep hybrid models were implemented and analyzed. The performance of deep learning algorithms was evaluated on an apnea-ECG dataset of 70 recordings divided into a learning set of 35 records and a test of 35 records. The best accuracy, sensitivity, specificity, and F1-score on the test data were 80.67%, 75.04%, 84.13%, and 74.72%, respectively, with a hybrid CNN and LSTM network. The results show promise toward improved apnea detection using deep learning.\",\"PeriodicalId\":429222,\"journal\":{\"name\":\"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MeMeA52024.2021.9478745\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MeMeA52024.2021.9478745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

呼吸暂停是一种普遍存在的睡眠障碍,对人类健康和生活质量有不利影响。需要精确的自动算法来检测睡眠呼吸暂停,以分析长期睡眠数据并监测和管理其副作用和后果。在从生物信号中自动检测睡眠呼吸暂停的不同方法中,深度学习算法特别令人感兴趣,因为与传统的机器学习算法不同,它们不依赖于专家精心制作的特征。在本文中,我们开发并评估了许多不同的深度学习模型,用于从单导联心电图(ECG)信号中检测睡眠呼吸暂停。提取心电r -峰值幅度和R-R区间,进行功率谱分析,将r -峰值幅度和R-R区间在频域对齐。对卷积神经网络(CNN)、长短期记忆(LSTM)、双向LSTM、门控循环单元和深度混合模型进行了实现和分析。深度学习算法的性能在一个由70条记录组成的呼吸暂停-心电图数据集上进行评估,该数据集分为35条记录的学习集和35条记录的测试集。CNN和LSTM混合网络在测试数据上的准确率、灵敏度、特异性和f1评分分别为80.67%、75.04%、84.13%和74.72%。研究结果显示,利用深度学习改进呼吸暂停检测大有希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of Sleep Apnea from Single-Lead ECG: Comparison of Deep Learning Algorithms
Apnea is a prevalent sleep disorder which has detrimental impacts on human health and quality of life. Accurate automatic algorithms for the detection of sleep apnea are needed for analyzing long-term sleep data and monitoring and management of its side effects and consequences. Among different approaches for automatic detection of sleep apnea from biosignals, deep learning algorithms are of particular interest as, unlike conventional machine learning algorithms, they do not rely on expert crafted features. In this paper, we developed and evaluated a number of different deep learning models for the detection of sleep apnea from a single-lead electrocardiogram (ECG) signal. ECG R-peak amplitude and R-R intervals were extracted, and power spectral analysis was performed to align the R-peak amplitude and the R-R intervals in frequency domain. Convolutional neural network (CNN), long short-term memory (LSTM), bidirectional LSTM, gated recurrent unit, and deep hybrid models were implemented and analyzed. The performance of deep learning algorithms was evaluated on an apnea-ECG dataset of 70 recordings divided into a learning set of 35 records and a test of 35 records. The best accuracy, sensitivity, specificity, and F1-score on the test data were 80.67%, 75.04%, 84.13%, and 74.72%, respectively, with a hybrid CNN and LSTM network. The results show promise toward improved apnea detection using deep learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信