噪声二值图的最优非线性模式恢复

D. Schonfeld
{"title":"噪声二值图的最优非线性模式恢复","authors":"D. Schonfeld","doi":"10.1109/CVPR.1992.223132","DOIUrl":null,"url":null,"abstract":"A mathematical framework for the solution of statistical inference problems on a class of random sets is proposed. It is based on a new definition of expected pattern. The least-mean-difference estimator (restoration filter) is proved, under certain conditions, to be equivalent to the minimization of the measure of size (area) of the set-difference between the original pattern and the expected pattern of the estimated (restored) pattern. Consequently, it is proved that, under certain conditions, if the estimator (restoration filter) is unbiased, then it is the least mean difference estimator (restoration filter).<<ETX>>","PeriodicalId":325476,"journal":{"name":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimal nonlinear pattern restoration from noisy binary figures\",\"authors\":\"D. Schonfeld\",\"doi\":\"10.1109/CVPR.1992.223132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A mathematical framework for the solution of statistical inference problems on a class of random sets is proposed. It is based on a new definition of expected pattern. The least-mean-difference estimator (restoration filter) is proved, under certain conditions, to be equivalent to the minimization of the measure of size (area) of the set-difference between the original pattern and the expected pattern of the estimated (restored) pattern. Consequently, it is proved that, under certain conditions, if the estimator (restoration filter) is unbiased, then it is the least mean difference estimator (restoration filter).<<ETX>>\",\"PeriodicalId\":325476,\"journal\":{\"name\":\"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.1992.223132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1992.223132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了求解一类随机集统计推理问题的数学框架。它基于期望模式的新定义。在一定条件下,证明了最小均值差分估计器(恢复滤波器)等价于估计(恢复)模式的原始模式与期望模式之间的集差的大小(面积)的最小化。因此,证明了在一定条件下,如果估计量(恢复滤波器)是无偏的,则它是最小均值差分估计量(恢复滤波器)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal nonlinear pattern restoration from noisy binary figures
A mathematical framework for the solution of statistical inference problems on a class of random sets is proposed. It is based on a new definition of expected pattern. The least-mean-difference estimator (restoration filter) is proved, under certain conditions, to be equivalent to the minimization of the measure of size (area) of the set-difference between the original pattern and the expected pattern of the estimated (restored) pattern. Consequently, it is proved that, under certain conditions, if the estimator (restoration filter) is unbiased, then it is the least mean difference estimator (restoration filter).<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信