基于AlN/金刚石层状结构的超高频SAW嵌入式纳米换能器

L. Wang, S.M. Chen, X. Ning, Z. Chen, J.T. Liu, J.Y. Zhang
{"title":"基于AlN/金刚石层状结构的超高频SAW嵌入式纳米换能器","authors":"L. Wang, S.M. Chen, X. Ning, Z. Chen, J.T. Liu, J.Y. Zhang","doi":"10.1109/ISAF.2017.8000223","DOIUrl":null,"url":null,"abstract":"In this work, we report the development and realization of ultrahigh-frequency, high-performance nano interdigital transducers (n-IDTs) for generation of surface acoustic wave (SAW) on aluminum nitride (AlN)/diamond/Si substrates, where the metal fingers are embedded in the AlN film. The well-defined n-IDTs' resolution down to 200 nm were obtained using electron beam lithography, inductively coupled plasma (ICP) etching and lift-off processing. The fabricated SAW resonators exhibit response at a ultrahigh-frequency range, as high as 9.94 GHz, with stronger intensities of S11 peaks compared with normal transducer devices. The good high-frequency characteristics of the embedded n-IDTs and compatibility with existing fabrication technologies pave the way for the realization of advanced sensors and monolithic integrated MMICs on AlN/diamond/Si substrates for the high frequency and high power applications.","PeriodicalId":421889,"journal":{"name":"2017 Joint IEEE International Symposium on the Applications of Ferroelectric (ISAF)/International Workshop on Acoustic Transduction Materials and Devices (IWATMD)/Piezoresponse Force Microscopy (PFM)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Embedded nanotransducer for ultrahigh-frequency SAW utilizing AlN/diamond layered structure\",\"authors\":\"L. Wang, S.M. Chen, X. Ning, Z. Chen, J.T. Liu, J.Y. Zhang\",\"doi\":\"10.1109/ISAF.2017.8000223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we report the development and realization of ultrahigh-frequency, high-performance nano interdigital transducers (n-IDTs) for generation of surface acoustic wave (SAW) on aluminum nitride (AlN)/diamond/Si substrates, where the metal fingers are embedded in the AlN film. The well-defined n-IDTs' resolution down to 200 nm were obtained using electron beam lithography, inductively coupled plasma (ICP) etching and lift-off processing. The fabricated SAW resonators exhibit response at a ultrahigh-frequency range, as high as 9.94 GHz, with stronger intensities of S11 peaks compared with normal transducer devices. The good high-frequency characteristics of the embedded n-IDTs and compatibility with existing fabrication technologies pave the way for the realization of advanced sensors and monolithic integrated MMICs on AlN/diamond/Si substrates for the high frequency and high power applications.\",\"PeriodicalId\":421889,\"journal\":{\"name\":\"2017 Joint IEEE International Symposium on the Applications of Ferroelectric (ISAF)/International Workshop on Acoustic Transduction Materials and Devices (IWATMD)/Piezoresponse Force Microscopy (PFM)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Joint IEEE International Symposium on the Applications of Ferroelectric (ISAF)/International Workshop on Acoustic Transduction Materials and Devices (IWATMD)/Piezoresponse Force Microscopy (PFM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAF.2017.8000223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Joint IEEE International Symposium on the Applications of Ferroelectric (ISAF)/International Workshop on Acoustic Transduction Materials and Devices (IWATMD)/Piezoresponse Force Microscopy (PFM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAF.2017.8000223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这项工作中,我们报告了超高频,高性能的纳米数字间换能器(n-IDTs)的开发和实现,用于在氮化铝(AlN)/金刚石/Si衬底上产生表面声波(SAW),其中金属手指嵌入在AlN薄膜中。利用电子束光刻、电感耦合等离子体(ICP)刻蚀和提离处理,获得了分辨率低至200 nm的n-IDTs。与普通换能器相比,所制备的SAW谐振器在高达9.94 GHz的超高频范围内具有更强的S11峰强度。嵌入式n-IDTs良好的高频特性以及与现有制造技术的兼容性,为在AlN/金刚石/Si衬底上实现高频和高功率应用的先进传感器和单片集成mmic铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Embedded nanotransducer for ultrahigh-frequency SAW utilizing AlN/diamond layered structure
In this work, we report the development and realization of ultrahigh-frequency, high-performance nano interdigital transducers (n-IDTs) for generation of surface acoustic wave (SAW) on aluminum nitride (AlN)/diamond/Si substrates, where the metal fingers are embedded in the AlN film. The well-defined n-IDTs' resolution down to 200 nm were obtained using electron beam lithography, inductively coupled plasma (ICP) etching and lift-off processing. The fabricated SAW resonators exhibit response at a ultrahigh-frequency range, as high as 9.94 GHz, with stronger intensities of S11 peaks compared with normal transducer devices. The good high-frequency characteristics of the embedded n-IDTs and compatibility with existing fabrication technologies pave the way for the realization of advanced sensors and monolithic integrated MMICs on AlN/diamond/Si substrates for the high frequency and high power applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信