# Instagram上的自我伤害:非自杀式自我伤害的定量分析和分类

Lei Xian, S. Vickers, Amanda L. Giordano, Jaewoo Lee, I. Kim, Lakshmish Ramaswamy
{"title":"# Instagram上的自我伤害:非自杀式自我伤害的定量分析和分类","authors":"Lei Xian, S. Vickers, Amanda L. Giordano, Jaewoo Lee, I. Kim, Lakshmish Ramaswamy","doi":"10.1109/CogMI48466.2019.00017","DOIUrl":null,"url":null,"abstract":"Non-Suicidal Self-Injury (NSSI) is the intentional destruction of body tissue without the intent to die. NSSI is particularly prevalent among adolescents and young adults as a means of emotional regulation. With the proliferation of social media, NSSI content is frequently being posted, viewed, and shared on popular social media platforms, which may increase social contagion among adolescents. To address this problem, this work first quantifies the prevalence of NSSI content on social media. We develop a content crawler that searches for posts, images, and videos with NSSI-related hashtags (e.g., #selfharm), downloads NSSI content from target social media platforms, and stores them in cloud storage. We then perform a trend analysis, which confirms a steep increase in NSSI posts on social media. Moreover, this work develops an image classifier to identify NSSI or non-NSSI images from social media content. Our classifier is based on the idea of weakly supervised object localization. We evaluate our NSSI classifier with more than 30K labeled NSSI images collected from social media. In our evaluation, our classifier accurately identifies NSSI images with 94% accuracy, and it outperforms state-of-the-art pre-trained models. An accurate NSSI image classifier is an essential first step to enable us and/or social media providers to protect adolescents and young adults from social contagion due to NSSI exposure through such actions as legitimate filtering mechanisms.","PeriodicalId":116160,"journal":{"name":"2019 IEEE First International Conference on Cognitive Machine Intelligence (CogMI)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"#selfharm on Instagram: Quantitative Analysis and Classification of Non-Suicidal Self-Injury\",\"authors\":\"Lei Xian, S. Vickers, Amanda L. Giordano, Jaewoo Lee, I. Kim, Lakshmish Ramaswamy\",\"doi\":\"10.1109/CogMI48466.2019.00017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-Suicidal Self-Injury (NSSI) is the intentional destruction of body tissue without the intent to die. NSSI is particularly prevalent among adolescents and young adults as a means of emotional regulation. With the proliferation of social media, NSSI content is frequently being posted, viewed, and shared on popular social media platforms, which may increase social contagion among adolescents. To address this problem, this work first quantifies the prevalence of NSSI content on social media. We develop a content crawler that searches for posts, images, and videos with NSSI-related hashtags (e.g., #selfharm), downloads NSSI content from target social media platforms, and stores them in cloud storage. We then perform a trend analysis, which confirms a steep increase in NSSI posts on social media. Moreover, this work develops an image classifier to identify NSSI or non-NSSI images from social media content. Our classifier is based on the idea of weakly supervised object localization. We evaluate our NSSI classifier with more than 30K labeled NSSI images collected from social media. In our evaluation, our classifier accurately identifies NSSI images with 94% accuracy, and it outperforms state-of-the-art pre-trained models. An accurate NSSI image classifier is an essential first step to enable us and/or social media providers to protect adolescents and young adults from social contagion due to NSSI exposure through such actions as legitimate filtering mechanisms.\",\"PeriodicalId\":116160,\"journal\":{\"name\":\"2019 IEEE First International Conference on Cognitive Machine Intelligence (CogMI)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE First International Conference on Cognitive Machine Intelligence (CogMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CogMI48466.2019.00017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE First International Conference on Cognitive Machine Intelligence (CogMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CogMI48466.2019.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

非自杀性自伤(NSSI)是一种没有死亡意图的故意破坏身体组织的行为。作为一种情绪调节手段,自伤在青少年和年轻人中尤为普遍。随着社交媒体的普及,自伤内容在流行的社交媒体平台上被频繁发布、观看和分享,这可能会增加青少年的社会传染。为了解决这个问题,本研究首先量化了社交媒体上自伤内容的流行程度。我们开发了一个内容爬虫,可以搜索带有自伤相关标签(例如#selfharm)的帖子、图像和视频,从目标社交媒体平台下载自伤内容,并将其存储在云存储中。然后我们进行了趋势分析,证实了社交媒体上自伤的帖子急剧增加。此外,本工作开发了一个图像分类器,用于从社交媒体内容中识别自伤或非自伤图像。我们的分类器基于弱监督对象定位的思想。我们使用从社交媒体上收集的超过30K的标记自伤图像来评估我们的自伤分类器。在我们的评估中,我们的分类器准确识别自伤图像的准确率为94%,并且优于最先进的预训练模型。准确的自伤图像分类器是必不可少的第一步,它使我们和/或社交媒体提供商能够通过合法的过滤机制等行动,保护青少年和年轻人免受自伤暴露的社会传染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
#selfharm on Instagram: Quantitative Analysis and Classification of Non-Suicidal Self-Injury
Non-Suicidal Self-Injury (NSSI) is the intentional destruction of body tissue without the intent to die. NSSI is particularly prevalent among adolescents and young adults as a means of emotional regulation. With the proliferation of social media, NSSI content is frequently being posted, viewed, and shared on popular social media platforms, which may increase social contagion among adolescents. To address this problem, this work first quantifies the prevalence of NSSI content on social media. We develop a content crawler that searches for posts, images, and videos with NSSI-related hashtags (e.g., #selfharm), downloads NSSI content from target social media platforms, and stores them in cloud storage. We then perform a trend analysis, which confirms a steep increase in NSSI posts on social media. Moreover, this work develops an image classifier to identify NSSI or non-NSSI images from social media content. Our classifier is based on the idea of weakly supervised object localization. We evaluate our NSSI classifier with more than 30K labeled NSSI images collected from social media. In our evaluation, our classifier accurately identifies NSSI images with 94% accuracy, and it outperforms state-of-the-art pre-trained models. An accurate NSSI image classifier is an essential first step to enable us and/or social media providers to protect adolescents and young adults from social contagion due to NSSI exposure through such actions as legitimate filtering mechanisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信