Ö. Demirel, S. Moeller, L. Vizioli, Burhaneddin Yaman, Logan T Dowdle, E. Yacoub, K. Uğurbil, M. Akçakaya
{"title":"高质量的0.5mm各向同性fMRI:随机矩阵理论满足物理驱动的深度学习","authors":"Ö. Demirel, S. Moeller, L. Vizioli, Burhaneddin Yaman, Logan T Dowdle, E. Yacoub, K. Uğurbil, M. Akçakaya","doi":"10.1109/NER52421.2023.10123799","DOIUrl":null,"url":null,"abstract":"Submillimeter fMRI plays a vital role in studying the brain function at the mesoscale level, allowing investigation of functional activity in small cortical structures. However, such resolutions require extreme trade-offs between SNR, spatio-temporal resolution and coverage leading to numerous challenges. Therefore, interpretable locally low-rank denoising methods based on random matrix theory have been proposed and built into fMRI pipelines, but they require well-characterized noise distributions on reconstructed images, which hinders the use of emerging physics-driven deep learning reconstructions. In this work, we re-envision the conventional fMRI computational imaging pipeline to an alternative where denoising is performed prior to reconstruction. This allows for a synergistic combination of random matrix theory based thermal noise suppression and physics-driven deep learning re-construction, enabling high-quality 0.5mm isotropic functional MRI. Our results show that the proposed strategy improves on denoising or physics-driven deep learning reconstruction alone, with better delineation of brain structures, higher tSNR particularly in mid-brain areas and the largest expected extent of activation in GLM-derived t-maps.","PeriodicalId":201841,"journal":{"name":"2023 11th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Quality 0.5mm Isotropic fMRI: Random Matrix Theory Meets Physics-Driven Deep Learning\",\"authors\":\"Ö. Demirel, S. Moeller, L. Vizioli, Burhaneddin Yaman, Logan T Dowdle, E. Yacoub, K. Uğurbil, M. Akçakaya\",\"doi\":\"10.1109/NER52421.2023.10123799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Submillimeter fMRI plays a vital role in studying the brain function at the mesoscale level, allowing investigation of functional activity in small cortical structures. However, such resolutions require extreme trade-offs between SNR, spatio-temporal resolution and coverage leading to numerous challenges. Therefore, interpretable locally low-rank denoising methods based on random matrix theory have been proposed and built into fMRI pipelines, but they require well-characterized noise distributions on reconstructed images, which hinders the use of emerging physics-driven deep learning reconstructions. In this work, we re-envision the conventional fMRI computational imaging pipeline to an alternative where denoising is performed prior to reconstruction. This allows for a synergistic combination of random matrix theory based thermal noise suppression and physics-driven deep learning re-construction, enabling high-quality 0.5mm isotropic functional MRI. Our results show that the proposed strategy improves on denoising or physics-driven deep learning reconstruction alone, with better delineation of brain structures, higher tSNR particularly in mid-brain areas and the largest expected extent of activation in GLM-derived t-maps.\",\"PeriodicalId\":201841,\"journal\":{\"name\":\"2023 11th International IEEE/EMBS Conference on Neural Engineering (NER)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 11th International IEEE/EMBS Conference on Neural Engineering (NER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NER52421.2023.10123799\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 11th International IEEE/EMBS Conference on Neural Engineering (NER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NER52421.2023.10123799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-Quality 0.5mm Isotropic fMRI: Random Matrix Theory Meets Physics-Driven Deep Learning
Submillimeter fMRI plays a vital role in studying the brain function at the mesoscale level, allowing investigation of functional activity in small cortical structures. However, such resolutions require extreme trade-offs between SNR, spatio-temporal resolution and coverage leading to numerous challenges. Therefore, interpretable locally low-rank denoising methods based on random matrix theory have been proposed and built into fMRI pipelines, but they require well-characterized noise distributions on reconstructed images, which hinders the use of emerging physics-driven deep learning reconstructions. In this work, we re-envision the conventional fMRI computational imaging pipeline to an alternative where denoising is performed prior to reconstruction. This allows for a synergistic combination of random matrix theory based thermal noise suppression and physics-driven deep learning re-construction, enabling high-quality 0.5mm isotropic functional MRI. Our results show that the proposed strategy improves on denoising or physics-driven deep learning reconstruction alone, with better delineation of brain structures, higher tSNR particularly in mid-brain areas and the largest expected extent of activation in GLM-derived t-maps.