多分辨率张量核的模型驱动SIMD代码生成

Kevin Stock, Thomas Henretty, Iyyappa Murugandi, P. Sadayappan, R. Harrison
{"title":"多分辨率张量核的模型驱动SIMD代码生成","authors":"Kevin Stock, Thomas Henretty, Iyyappa Murugandi, P. Sadayappan, R. Harrison","doi":"10.1109/IPDPS.2011.101","DOIUrl":null,"url":null,"abstract":"In this paper, we describe a model-driven compile-time code generator that transforms a class of tensor contraction expressions into highly optimized short-vector SIMD code. We use as a case study a multi-resolution tensor kernel from the MADNESS quantum chemistry application. Performance of a C-based implementation is low, and because the dimensions of the tensors are small, performance using vendor optimized BLAS libraries is also sub optimal. We develop a model-driven code generator that determines the optimal loop permutation and placement of vector load/store, transpose, and splat operations in the generated code, enabling portable performance on short-vector SIMD architectures. Experimental results on an SSE-based platform demonstrate the efficiency of the vector-code synthesizer.","PeriodicalId":355100,"journal":{"name":"2011 IEEE International Parallel & Distributed Processing Symposium","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Model-Driven SIMD Code Generation for a Multi-resolution Tensor Kernel\",\"authors\":\"Kevin Stock, Thomas Henretty, Iyyappa Murugandi, P. Sadayappan, R. Harrison\",\"doi\":\"10.1109/IPDPS.2011.101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we describe a model-driven compile-time code generator that transforms a class of tensor contraction expressions into highly optimized short-vector SIMD code. We use as a case study a multi-resolution tensor kernel from the MADNESS quantum chemistry application. Performance of a C-based implementation is low, and because the dimensions of the tensors are small, performance using vendor optimized BLAS libraries is also sub optimal. We develop a model-driven code generator that determines the optimal loop permutation and placement of vector load/store, transpose, and splat operations in the generated code, enabling portable performance on short-vector SIMD architectures. Experimental results on an SSE-based platform demonstrate the efficiency of the vector-code synthesizer.\",\"PeriodicalId\":355100,\"journal\":{\"name\":\"2011 IEEE International Parallel & Distributed Processing Symposium\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Parallel & Distributed Processing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS.2011.101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Parallel & Distributed Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2011.101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

在本文中,我们描述了一个模型驱动的编译时代码生成器,它将一类张量收缩表达式转换为高度优化的短向量SIMD代码。我们使用一个案例研究多分辨率张量核从疯癫量子化学应用。基于c的实现的性能很低,而且由于张量的维度很小,使用供应商优化的BLAS库的性能也不是最优的。我们开发了一个模型驱动的代码生成器,它确定了生成代码中矢量加载/存储、转置和splat操作的最佳循环排列和位置,从而实现了短矢量SIMD架构上的可移植性能。在sse平台上的实验结果证明了矢量码合成器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model-Driven SIMD Code Generation for a Multi-resolution Tensor Kernel
In this paper, we describe a model-driven compile-time code generator that transforms a class of tensor contraction expressions into highly optimized short-vector SIMD code. We use as a case study a multi-resolution tensor kernel from the MADNESS quantum chemistry application. Performance of a C-based implementation is low, and because the dimensions of the tensors are small, performance using vendor optimized BLAS libraries is also sub optimal. We develop a model-driven code generator that determines the optimal loop permutation and placement of vector load/store, transpose, and splat operations in the generated code, enabling portable performance on short-vector SIMD architectures. Experimental results on an SSE-based platform demonstrate the efficiency of the vector-code synthesizer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信