基于注意力的方法对维度情绪识别的评估

Antonio Jeovane da Silva Ferreira, Gabriela Regina Soares, João Baptista Cardia Neto
{"title":"基于注意力的方法对维度情绪识别的评估","authors":"Antonio Jeovane da Silva Ferreira, Gabriela Regina Soares, João Baptista Cardia Neto","doi":"10.31510/infa.v19i2.1523","DOIUrl":null,"url":null,"abstract":"O feedback não verbal e o reconhecimento das expressões faciais têm sido área de muita pesquisa nas últimas décadas. As expressões faciais são uma maneira concreta de reconhecer emoções e “ensinar” os computadores a detectar corretamente o que cada expressão facial significa e a qual emoção está ligada. Assim, no âmbito do reconhecimento de imagens, as Redes Neurais Convolucionais (RNC), através de suas camadas sobre os pixels da imagem, facilitam a descoberta de padrões. Dessa forma, através da aplicação de uma RNC com um mecanismo de atenção, o objetivo do presente artigo é decodificar as expressões não verbais presentes no banco de dados utilizado e identificar a quais emoções estão ligadas. Através da análise do CCC (Coeficiente De Correlação De Concordância) e do Erro Quadrático Médio (RMSE) para as dimensões de valence e arousal, o presente artigo mostra que o método utilizado traz resultados, mas ainda é possível melhorar o aprendizado de máquina.","PeriodicalId":221657,"journal":{"name":"Revista Interface Tecnológica","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AVALIAÇÃO DE RECONHECIMENTO DE EMOÇÃO DIMENSIONAL COM UMA ABORDAGEM BASEADA EM ATENÇÃO\",\"authors\":\"Antonio Jeovane da Silva Ferreira, Gabriela Regina Soares, João Baptista Cardia Neto\",\"doi\":\"10.31510/infa.v19i2.1523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"O feedback não verbal e o reconhecimento das expressões faciais têm sido área de muita pesquisa nas últimas décadas. As expressões faciais são uma maneira concreta de reconhecer emoções e “ensinar” os computadores a detectar corretamente o que cada expressão facial significa e a qual emoção está ligada. Assim, no âmbito do reconhecimento de imagens, as Redes Neurais Convolucionais (RNC), através de suas camadas sobre os pixels da imagem, facilitam a descoberta de padrões. Dessa forma, através da aplicação de uma RNC com um mecanismo de atenção, o objetivo do presente artigo é decodificar as expressões não verbais presentes no banco de dados utilizado e identificar a quais emoções estão ligadas. Através da análise do CCC (Coeficiente De Correlação De Concordância) e do Erro Quadrático Médio (RMSE) para as dimensões de valence e arousal, o presente artigo mostra que o método utilizado traz resultados, mas ainda é possível melhorar o aprendizado de máquina.\",\"PeriodicalId\":221657,\"journal\":{\"name\":\"Revista Interface Tecnológica\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Interface Tecnológica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31510/infa.v19i2.1523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Interface Tecnológica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31510/infa.v19i2.1523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近几十年来,非语言反馈和面部表情识别一直是研究的热点。面部表情是一种识别情绪的具体方法,并“教”计算机正确地检测每个面部表情的含义以及与哪种情绪相关。因此,在图像识别领域,卷积神经网络(RNC)通过其在图像像素上的层,促进了模式的发现。因此,通过应用一个带有注意机制的RNC,本文的目的是解码数据库中的非语言表达,并识别它们与哪些情绪相关。通过对价维度和唤起维度的CCC(一致性相关系数)和均方误差(RMSE)的分析,表明该方法有结果,但仍有改进机器学习的空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AVALIAÇÃO DE RECONHECIMENTO DE EMOÇÃO DIMENSIONAL COM UMA ABORDAGEM BASEADA EM ATENÇÃO
O feedback não verbal e o reconhecimento das expressões faciais têm sido área de muita pesquisa nas últimas décadas. As expressões faciais são uma maneira concreta de reconhecer emoções e “ensinar” os computadores a detectar corretamente o que cada expressão facial significa e a qual emoção está ligada. Assim, no âmbito do reconhecimento de imagens, as Redes Neurais Convolucionais (RNC), através de suas camadas sobre os pixels da imagem, facilitam a descoberta de padrões. Dessa forma, através da aplicação de uma RNC com um mecanismo de atenção, o objetivo do presente artigo é decodificar as expressões não verbais presentes no banco de dados utilizado e identificar a quais emoções estão ligadas. Através da análise do CCC (Coeficiente De Correlação De Concordância) e do Erro Quadrático Médio (RMSE) para as dimensões de valence e arousal, o presente artigo mostra que o método utilizado traz resultados, mas ainda é possível melhorar o aprendizado de máquina.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信