用多目标Hype求解非线性方程组

Sha Qin, Sanyou Zeng, Wei Dong, Xi Li
{"title":"用多目标Hype求解非线性方程组","authors":"Sha Qin, Sanyou Zeng, Wei Dong, Xi Li","doi":"10.1109/CEC.2015.7257222","DOIUrl":null,"url":null,"abstract":"A difficulty in solving nonlinear equation systems (NESs) stays in finding all the solutions for NES. This paper uses multi-objective evolutionary techniques to overcome it. We converted the NES into a multi-objective optimization problem (MOP) with a parameter C. The Pareto-optimal set of the MOP becomes the solutions of the NES when the parameter C gets to infinity. Next, a multi-objective evolutionary algorithm (MOEA) is used to solve the transformed MOP, during which C is gradually approaching infinity. A significant feature of this algorithm is that there is one-to-one relationship between the Pareto optimal set and the Pareto front, which suggests that different solutions have different objective values in the MOP. Thus the MOEA can find multi-solutions of the NES in a single run. Since the MOP is a multi-objective problem in many cases, this paper applies an advanced multi-objective evolutionary algorithm (i.e., Hype algorithm) to solve NES. Our experiment shows better results than or competitive to the four mentioned single-objective optimization in a set of test cases.","PeriodicalId":403666,"journal":{"name":"2015 IEEE Congress on Evolutionary Computation (CEC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Nonlinear equation systems solved by many-objective Hype\",\"authors\":\"Sha Qin, Sanyou Zeng, Wei Dong, Xi Li\",\"doi\":\"10.1109/CEC.2015.7257222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A difficulty in solving nonlinear equation systems (NESs) stays in finding all the solutions for NES. This paper uses multi-objective evolutionary techniques to overcome it. We converted the NES into a multi-objective optimization problem (MOP) with a parameter C. The Pareto-optimal set of the MOP becomes the solutions of the NES when the parameter C gets to infinity. Next, a multi-objective evolutionary algorithm (MOEA) is used to solve the transformed MOP, during which C is gradually approaching infinity. A significant feature of this algorithm is that there is one-to-one relationship between the Pareto optimal set and the Pareto front, which suggests that different solutions have different objective values in the MOP. Thus the MOEA can find multi-solutions of the NES in a single run. Since the MOP is a multi-objective problem in many cases, this paper applies an advanced multi-objective evolutionary algorithm (i.e., Hype algorithm) to solve NES. Our experiment shows better results than or competitive to the four mentioned single-objective optimization in a set of test cases.\",\"PeriodicalId\":403666,\"journal\":{\"name\":\"2015 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2015.7257222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2015.7257222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

求解非线性方程组的一个难点在于求非线性方程组的所有解。本文采用多目标进化技术来克服这一问题。我们将网络问题转化为一个参数为C的多目标优化问题(MOP),当参数C趋于无穷时,MOP的pareto最优集成为网络问题的解。然后,使用多目标进化算法(MOEA)求解变换后的MOP,其间C逐渐趋近于无穷。该算法的一个显著特征是Pareto最优集与Pareto front之间存在一对一的关系,这意味着不同的解在MOP中具有不同的目标值。因此,MOEA可以在一次运行中找到NES的多个解。由于MOP在很多情况下是一个多目标问题,因此本文采用了一种先进的多目标进化算法(即Hype算法)来求解NES。在一组测试用例中,我们的实验显示了比上述四种单目标优化更好或更具竞争力的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear equation systems solved by many-objective Hype
A difficulty in solving nonlinear equation systems (NESs) stays in finding all the solutions for NES. This paper uses multi-objective evolutionary techniques to overcome it. We converted the NES into a multi-objective optimization problem (MOP) with a parameter C. The Pareto-optimal set of the MOP becomes the solutions of the NES when the parameter C gets to infinity. Next, a multi-objective evolutionary algorithm (MOEA) is used to solve the transformed MOP, during which C is gradually approaching infinity. A significant feature of this algorithm is that there is one-to-one relationship between the Pareto optimal set and the Pareto front, which suggests that different solutions have different objective values in the MOP. Thus the MOEA can find multi-solutions of the NES in a single run. Since the MOP is a multi-objective problem in many cases, this paper applies an advanced multi-objective evolutionary algorithm (i.e., Hype algorithm) to solve NES. Our experiment shows better results than or competitive to the four mentioned single-objective optimization in a set of test cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信