一种用于控制应用的多功能动态神经处理器

D. Rao, M. Gupta
{"title":"一种用于控制应用的多功能动态神经处理器","authors":"D. Rao, M. Gupta","doi":"10.23919/ACC.1993.4793431","DOIUrl":null,"url":null,"abstract":"In this paper we propose a neural network structure called dynamic neural processor (DNP) which comprises of two dynamic neural units coupled as excitatory and inhibitory neurons. This neural model is inspired by the collective computation of subpopulation of biological neurons. It is demonstrated in this paper that the proposed neural architecture can perform various functions, such as learning the inverse kinematics transformation of two- and three-linked robots, and controlling the unknown nonlinear dynamic systems.","PeriodicalId":162700,"journal":{"name":"1993 American Control Conference","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Muti-Functional Dynamic Neural Processor for Control Applications\",\"authors\":\"D. Rao, M. Gupta\",\"doi\":\"10.23919/ACC.1993.4793431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a neural network structure called dynamic neural processor (DNP) which comprises of two dynamic neural units coupled as excitatory and inhibitory neurons. This neural model is inspired by the collective computation of subpopulation of biological neurons. It is demonstrated in this paper that the proposed neural architecture can perform various functions, such as learning the inverse kinematics transformation of two- and three-linked robots, and controlling the unknown nonlinear dynamic systems.\",\"PeriodicalId\":162700,\"journal\":{\"name\":\"1993 American Control Conference\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1993 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC.1993.4793431\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1993 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.1993.4793431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文提出了一种动态神经处理器(DNP)的神经网络结构,它由两个动态神经单元耦合成兴奋神经元和抑制神经元。该神经模型的灵感来自于生物神经元亚群的集体计算。研究表明,所提出的神经网络结构可以实现学习二连杆和三连杆机器人的运动学逆变换、控制未知非线性动态系统等多种功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Muti-Functional Dynamic Neural Processor for Control Applications
In this paper we propose a neural network structure called dynamic neural processor (DNP) which comprises of two dynamic neural units coupled as excitatory and inhibitory neurons. This neural model is inspired by the collective computation of subpopulation of biological neurons. It is demonstrated in this paper that the proposed neural architecture can perform various functions, such as learning the inverse kinematics transformation of two- and three-linked robots, and controlling the unknown nonlinear dynamic systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信