基于局部二值模式和多目标遗传算法的红外人脸识别

Tu Wei, Zhihua Xie
{"title":"基于局部二值模式和多目标遗传算法的红外人脸识别","authors":"Tu Wei, Zhihua Xie","doi":"10.1109/ICINFA.2011.5949017","DOIUrl":null,"url":null,"abstract":"To extract the discrimination local structural features, an improved infrared face recognition method based on LBP is proposed in this paper. To get robust local features in infrared face, local binary pattern representation is applied to our method, instead of holistic feature extraction method. The main drawback of LBP patterns representation is that the dimension of LBP pattern features is relatively high. Feature selection algorithm based on multi-objective genetic algorithm (MOGA) is proposed to analyze and discard patterns that are not relevant to the recognition task. The experimental results demonstrate the infrared face recognition method based on LBP+MOGA proposed outperforms the traditional methods based on LBP or PCA+LDA.","PeriodicalId":299418,"journal":{"name":"2011 IEEE International Conference on Information and Automation","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Infrared face recognition based on local binary pattern and multi-objective genetic algorithm\",\"authors\":\"Tu Wei, Zhihua Xie\",\"doi\":\"10.1109/ICINFA.2011.5949017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To extract the discrimination local structural features, an improved infrared face recognition method based on LBP is proposed in this paper. To get robust local features in infrared face, local binary pattern representation is applied to our method, instead of holistic feature extraction method. The main drawback of LBP patterns representation is that the dimension of LBP pattern features is relatively high. Feature selection algorithm based on multi-objective genetic algorithm (MOGA) is proposed to analyze and discard patterns that are not relevant to the recognition task. The experimental results demonstrate the infrared face recognition method based on LBP+MOGA proposed outperforms the traditional methods based on LBP or PCA+LDA.\",\"PeriodicalId\":299418,\"journal\":{\"name\":\"2011 IEEE International Conference on Information and Automation\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Information and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICINFA.2011.5949017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Information and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICINFA.2011.5949017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

为了提取识别局部结构特征,提出了一种改进的基于LBP的红外人脸识别方法。为了获得鲁棒的红外人脸局部特征,该方法采用局部二值模式表示代替整体特征提取方法。LBP模式表示的主要缺点是LBP模式特征的维数相对较高。提出了基于多目标遗传算法(MOGA)的特征选择算法,对与识别任务无关的模式进行分析和丢弃。实验结果表明,基于LBP+MOGA的红外人脸识别方法优于基于LBP或PCA+LDA的传统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infrared face recognition based on local binary pattern and multi-objective genetic algorithm
To extract the discrimination local structural features, an improved infrared face recognition method based on LBP is proposed in this paper. To get robust local features in infrared face, local binary pattern representation is applied to our method, instead of holistic feature extraction method. The main drawback of LBP patterns representation is that the dimension of LBP pattern features is relatively high. Feature selection algorithm based on multi-objective genetic algorithm (MOGA) is proposed to analyze and discard patterns that are not relevant to the recognition task. The experimental results demonstrate the infrared face recognition method based on LBP+MOGA proposed outperforms the traditional methods based on LBP or PCA+LDA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信