自适应软件缓存管理

Gil Einziger, Ohad Eytan, R. Friedman, Ben Manes
{"title":"自适应软件缓存管理","authors":"Gil Einziger, Ohad Eytan, R. Friedman, Ben Manes","doi":"10.1145/3274808.3274816","DOIUrl":null,"url":null,"abstract":"Developing a silver bullet software cache management policy is a daunting task due to the variety of potential workloads. In this paper, we investigate an adaptivity mechanism for software cache management schemes which offer tuning parameters targeted at the frequency vs. recency bias in the workload. The goal is automatic tuning of the parameters for best performance based on the workload without any manual intervention. We study two approaches for this problem, a hill climbing solution and an indicator based solution. In hill climbing, we repeatedly reconfigure the system hoping to find its best setting. In the indicator approach, we estimate the workloads' frequency vs. recency bias and adjust the parameters accordingly in a single swoop. We apply these adaptive mechanisms to two recent software management schemes. We perform an extensive evaluation of the schemes and adaptation mechanisms over a large selection of workloads with varying characteristics. With these, we derive a parameterless software cache management policy that is competitive for all tested workloads.","PeriodicalId":167957,"journal":{"name":"Proceedings of the 19th International Middleware Conference","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Adaptive Software Cache Management\",\"authors\":\"Gil Einziger, Ohad Eytan, R. Friedman, Ben Manes\",\"doi\":\"10.1145/3274808.3274816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developing a silver bullet software cache management policy is a daunting task due to the variety of potential workloads. In this paper, we investigate an adaptivity mechanism for software cache management schemes which offer tuning parameters targeted at the frequency vs. recency bias in the workload. The goal is automatic tuning of the parameters for best performance based on the workload without any manual intervention. We study two approaches for this problem, a hill climbing solution and an indicator based solution. In hill climbing, we repeatedly reconfigure the system hoping to find its best setting. In the indicator approach, we estimate the workloads' frequency vs. recency bias and adjust the parameters accordingly in a single swoop. We apply these adaptive mechanisms to two recent software management schemes. We perform an extensive evaluation of the schemes and adaptation mechanisms over a large selection of workloads with varying characteristics. With these, we derive a parameterless software cache management policy that is competitive for all tested workloads.\",\"PeriodicalId\":167957,\"journal\":{\"name\":\"Proceedings of the 19th International Middleware Conference\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th International Middleware Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3274808.3274816\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th International Middleware Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3274808.3274816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

由于潜在工作负载的多样性,开发一个银弹软件缓存管理策略是一项艰巨的任务。在本文中,我们研究了软件缓存管理方案的自适应机制,该方案提供了针对工作负载中频率与近期偏差的调优参数。目标是在没有任何人工干预的情况下,根据工作负载自动调优参数以获得最佳性能。我们研究了这一问题的两种解决方法:爬坡解和基于指标的解。在爬山的过程中,我们反复地重新配置系统,希望找到它的最佳设置。在指标方法中,我们估计工作负载的频率与近期偏差,并相应地调整参数。我们将这些自适应机制应用于两种最新的软件管理方案。我们对具有不同特征的大量工作负载的方案和适应机制进行了广泛的评估。有了这些,我们得出了一个对所有测试工作负载都具有竞争力的无参数软件缓存管理策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Software Cache Management
Developing a silver bullet software cache management policy is a daunting task due to the variety of potential workloads. In this paper, we investigate an adaptivity mechanism for software cache management schemes which offer tuning parameters targeted at the frequency vs. recency bias in the workload. The goal is automatic tuning of the parameters for best performance based on the workload without any manual intervention. We study two approaches for this problem, a hill climbing solution and an indicator based solution. In hill climbing, we repeatedly reconfigure the system hoping to find its best setting. In the indicator approach, we estimate the workloads' frequency vs. recency bias and adjust the parameters accordingly in a single swoop. We apply these adaptive mechanisms to two recent software management schemes. We perform an extensive evaluation of the schemes and adaptation mechanisms over a large selection of workloads with varying characteristics. With these, we derive a parameterless software cache management policy that is competitive for all tested workloads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信