矩阵量化与矢量量化误差补偿的鲁棒语音识别

L. Cong, S. Asghar
{"title":"矩阵量化与矢量量化误差补偿的鲁棒语音识别","authors":"L. Cong, S. Asghar","doi":"10.1109/MMSP.1998.738924","DOIUrl":null,"url":null,"abstract":"This paper proposes a robust, speaker-independent IWSR system which combines dual fuzzy matrix quantization (FMQ) and fuzzy vector quantization (FVQ) pairs, or dual MQ/VQ quantization pair with a discrete HMM to efficiently utilize processing resources and improve speech recognition performance. This system exploits the \"evolution\" of the speech short-term spectral envelopes with error compensation from FVQ/HMM, or VQ/HMM processes to target noise-affected input signal parameters and minimize noise influence. The enhanced processing technology employs a weighted LSP distance measure in the LBG algorithm. Computer simulation using gender-dependent HMMs clearly indicates the superiority over conventional FVQ/HMM and FMQ/HMM systems with 96.48% and 92.8% recognition accuracy at 20 dB and 5 dB SNR levels, respectively in a car noise environment, based on database TIDIGITS.","PeriodicalId":180426,"journal":{"name":"1998 IEEE Second Workshop on Multimedia Signal Processing (Cat. No.98EX175)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Matrix quantization with vector quantization error compensation for robust speech recognition\",\"authors\":\"L. Cong, S. Asghar\",\"doi\":\"10.1109/MMSP.1998.738924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a robust, speaker-independent IWSR system which combines dual fuzzy matrix quantization (FMQ) and fuzzy vector quantization (FVQ) pairs, or dual MQ/VQ quantization pair with a discrete HMM to efficiently utilize processing resources and improve speech recognition performance. This system exploits the \\\"evolution\\\" of the speech short-term spectral envelopes with error compensation from FVQ/HMM, or VQ/HMM processes to target noise-affected input signal parameters and minimize noise influence. The enhanced processing technology employs a weighted LSP distance measure in the LBG algorithm. Computer simulation using gender-dependent HMMs clearly indicates the superiority over conventional FVQ/HMM and FMQ/HMM systems with 96.48% and 92.8% recognition accuracy at 20 dB and 5 dB SNR levels, respectively in a car noise environment, based on database TIDIGITS.\",\"PeriodicalId\":180426,\"journal\":{\"name\":\"1998 IEEE Second Workshop on Multimedia Signal Processing (Cat. No.98EX175)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1998 IEEE Second Workshop on Multimedia Signal Processing (Cat. No.98EX175)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.1998.738924\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 IEEE Second Workshop on Multimedia Signal Processing (Cat. No.98EX175)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.1998.738924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

为了有效利用处理资源,提高语音识别性能,本文提出了一种鲁棒的、与说话人无关的IWSR系统,该系统将对偶模糊矩阵量化(FMQ)和模糊矢量量化(FVQ)对或对偶模糊矩阵/矢量量化对与离散HMM相结合。该系统利用语音短期频谱包络的“演化”,通过FVQ/HMM或VQ/HMM过程的误差补偿来瞄准受噪声影响的输入信号参数,并将噪声影响最小化。增强处理技术在LBG算法中采用了加权LSP距离度量。基于数据库TIDIGITS的汽车噪声环境下,基于性别相关性HMM的计算机仿真结果表明,在20 dB和5 dB信噪比水平下,FVQ/HMM和FMQ/HMM识别准确率分别为96.48%和92.8%,明显优于传统的FVQ/HMM系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Matrix quantization with vector quantization error compensation for robust speech recognition
This paper proposes a robust, speaker-independent IWSR system which combines dual fuzzy matrix quantization (FMQ) and fuzzy vector quantization (FVQ) pairs, or dual MQ/VQ quantization pair with a discrete HMM to efficiently utilize processing resources and improve speech recognition performance. This system exploits the "evolution" of the speech short-term spectral envelopes with error compensation from FVQ/HMM, or VQ/HMM processes to target noise-affected input signal parameters and minimize noise influence. The enhanced processing technology employs a weighted LSP distance measure in the LBG algorithm. Computer simulation using gender-dependent HMMs clearly indicates the superiority over conventional FVQ/HMM and FMQ/HMM systems with 96.48% and 92.8% recognition accuracy at 20 dB and 5 dB SNR levels, respectively in a car noise environment, based on database TIDIGITS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信