基于城市计算的异构数据分布式异常过滤算法

Shiwei Wang, Yangyang Li, Xiaobin Xu, Guijie Yue
{"title":"基于城市计算的异构数据分布式异常过滤算法","authors":"Shiwei Wang, Yangyang Li, Xiaobin Xu, Guijie Yue","doi":"10.1145/3404555.3404636","DOIUrl":null,"url":null,"abstract":"In modern cities, numerous urban perception devices collect and release urban data all the time, but urban data may become abnormal due to environmental interference or artificial tampering. In view of the problem that urban data will face data anomalies, this paper designs a distributed gauss membership anomaly data filtering algorithm, and defines a set of extraction protocols suitable for heterogeneous data. Simulation results show that this algorithm can filter abnormal data in real time, improve the efficiency of urban computing and reduce the cost of network.","PeriodicalId":220526,"journal":{"name":"Proceedings of the 2020 6th International Conference on Computing and Artificial Intelligence","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Distributed Anomaly Filtering Algorithm for Heterogeneous Data Based on City Computing\",\"authors\":\"Shiwei Wang, Yangyang Li, Xiaobin Xu, Guijie Yue\",\"doi\":\"10.1145/3404555.3404636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In modern cities, numerous urban perception devices collect and release urban data all the time, but urban data may become abnormal due to environmental interference or artificial tampering. In view of the problem that urban data will face data anomalies, this paper designs a distributed gauss membership anomaly data filtering algorithm, and defines a set of extraction protocols suitable for heterogeneous data. Simulation results show that this algorithm can filter abnormal data in real time, improve the efficiency of urban computing and reduce the cost of network.\",\"PeriodicalId\":220526,\"journal\":{\"name\":\"Proceedings of the 2020 6th International Conference on Computing and Artificial Intelligence\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 6th International Conference on Computing and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3404555.3404636\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 6th International Conference on Computing and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3404555.3404636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在现代城市中,无数的城市感知设备无时无刻不在收集和发布城市数据,但城市数据可能会因环境干扰或人为篡改而出现异常。针对城市数据将面临的数据异常问题,设计了一种分布式高斯隶属度异常数据过滤算法,并定义了一套适用于异构数据的提取协议。仿真结果表明,该算法能够实时过滤异常数据,提高城市计算效率,降低网络成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Distributed Anomaly Filtering Algorithm for Heterogeneous Data Based on City Computing
In modern cities, numerous urban perception devices collect and release urban data all the time, but urban data may become abnormal due to environmental interference or artificial tampering. In view of the problem that urban data will face data anomalies, this paper designs a distributed gauss membership anomaly data filtering algorithm, and defines a set of extraction protocols suitable for heterogeneous data. Simulation results show that this algorithm can filter abnormal data in real time, improve the efficiency of urban computing and reduce the cost of network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信