基于运动不协调和时间的抑郁的声音和面部生物标志物

AVEC '14 Pub Date : 2014-11-07 DOI:10.1145/2661806.2661809
J. Williamson, T. Quatieri, Brian S. Helfer, G. Ciccarelli, D. Mehta
{"title":"基于运动不协调和时间的抑郁的声音和面部生物标志物","authors":"J. Williamson, T. Quatieri, Brian S. Helfer, G. Ciccarelli, D. Mehta","doi":"10.1145/2661806.2661809","DOIUrl":null,"url":null,"abstract":"In individuals with major depressive disorder, neurophysiological changes often alter motor control and thus affect the mechanisms controlling speech production and facial expression. These changes are typically associated with psychomotor retardation, a condition marked by slowed neuromotor output that is behaviorally manifested as altered coordination and timing across multiple motor-based properties. Changes in motor outputs can be inferred from vocal acoustics and facial movements as individuals speak. We derive novel multi-scale correlation structure and timing feature sets from audio-based vocal features and video-based facial action units from recordings provided by the 4th International Audio/Video Emotion Challenge (AVEC). The feature sets enable detection of changes in coordination, movement, and timing of vocal and facial gestures that are potentially symptomatic of depression. Combining complementary features in Gaussian mixture model and extreme learning machine classifiers, our multivariate regression scheme predicts Beck depression inventory ratings on the AVEC test set with a root-mean-square error of 8.12 and mean absolute error of 6.31. Future work calls for continued study into detection of neurological disorders based on altered coordination and timing across audio and video modalities.","PeriodicalId":318508,"journal":{"name":"AVEC '14","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"178","resultStr":"{\"title\":\"Vocal and Facial Biomarkers of Depression based on Motor Incoordination and Timing\",\"authors\":\"J. Williamson, T. Quatieri, Brian S. Helfer, G. Ciccarelli, D. Mehta\",\"doi\":\"10.1145/2661806.2661809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In individuals with major depressive disorder, neurophysiological changes often alter motor control and thus affect the mechanisms controlling speech production and facial expression. These changes are typically associated with psychomotor retardation, a condition marked by slowed neuromotor output that is behaviorally manifested as altered coordination and timing across multiple motor-based properties. Changes in motor outputs can be inferred from vocal acoustics and facial movements as individuals speak. We derive novel multi-scale correlation structure and timing feature sets from audio-based vocal features and video-based facial action units from recordings provided by the 4th International Audio/Video Emotion Challenge (AVEC). The feature sets enable detection of changes in coordination, movement, and timing of vocal and facial gestures that are potentially symptomatic of depression. Combining complementary features in Gaussian mixture model and extreme learning machine classifiers, our multivariate regression scheme predicts Beck depression inventory ratings on the AVEC test set with a root-mean-square error of 8.12 and mean absolute error of 6.31. Future work calls for continued study into detection of neurological disorders based on altered coordination and timing across audio and video modalities.\",\"PeriodicalId\":318508,\"journal\":{\"name\":\"AVEC '14\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"178\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AVEC '14\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2661806.2661809\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AVEC '14","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2661806.2661809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 178

摘要

在重度抑郁症患者中,神经生理变化经常改变运动控制,从而影响控制语言产生和面部表情的机制。这些变化通常与精神运动迟缓有关,这是一种以神经运动输出减慢为特征的情况,其行为表现为多种运动特性的协调和时间改变。运动输出的变化可以从个人说话时的声音声学和面部运动推断出来。我们从第四届国际音频/视频情感挑战赛(AVEC)提供的录音中基于音频的声音特征和基于视频的面部动作单元中获得了新的多尺度相关结构和时间特征集。这些功能集可以检测出可能是抑郁症症状的声音和面部手势的协调、运动和时间变化。结合高斯混合模型的互补特征和极限学习机分类器,我们的多元回归方案在AVEC测试集上预测Beck抑郁量表评分,均方根误差为8.12,平均绝对误差为6.31。未来的工作需要继续研究基于音频和视频模式的协调和时间改变来检测神经系统疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vocal and Facial Biomarkers of Depression based on Motor Incoordination and Timing
In individuals with major depressive disorder, neurophysiological changes often alter motor control and thus affect the mechanisms controlling speech production and facial expression. These changes are typically associated with psychomotor retardation, a condition marked by slowed neuromotor output that is behaviorally manifested as altered coordination and timing across multiple motor-based properties. Changes in motor outputs can be inferred from vocal acoustics and facial movements as individuals speak. We derive novel multi-scale correlation structure and timing feature sets from audio-based vocal features and video-based facial action units from recordings provided by the 4th International Audio/Video Emotion Challenge (AVEC). The feature sets enable detection of changes in coordination, movement, and timing of vocal and facial gestures that are potentially symptomatic of depression. Combining complementary features in Gaussian mixture model and extreme learning machine classifiers, our multivariate regression scheme predicts Beck depression inventory ratings on the AVEC test set with a root-mean-square error of 8.12 and mean absolute error of 6.31. Future work calls for continued study into detection of neurological disorders based on altered coordination and timing across audio and video modalities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信