Ivana Kovačević-Badstübner, T. Ziemann, Bhagyalakshmi Kakarla, U. Grossner
{"title":"离散SiC功率器件的高精度虚拟动态特性","authors":"Ivana Kovačević-Badstübner, T. Ziemann, Bhagyalakshmi Kakarla, U. Grossner","doi":"10.23919/ISPSD.2017.7988984","DOIUrl":null,"url":null,"abstract":"Optimized low-inductive layouting of the package interconnections and external PCBs and bus-bars are necessary to benefit from Silicon Carbide (SiC) power devices, which allow inherently very fast switching transitions. In this paper, a comprehensive modeling procedure for highly accurate virtual dynamic characterization of discrete SiC power devices is described taking into account the 3D geometry of the internal and external interconnections of package as input. The modeling requirements are discussed on an example of a commercial 1.2 kV, 80 mΩ SiC Power MOSFET in a standard TO-247 package (Cree C2M0080120D). The software tools, Simplorer, Saber, Q3D and LTSpice, commonly used for modeling and simulation of power modules, are evaluated with respect to their modeling capabilities for SiC devices.","PeriodicalId":202561,"journal":{"name":"2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Highly accurate virtual dynamic characterization of discrete SiC power devices\",\"authors\":\"Ivana Kovačević-Badstübner, T. Ziemann, Bhagyalakshmi Kakarla, U. Grossner\",\"doi\":\"10.23919/ISPSD.2017.7988984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimized low-inductive layouting of the package interconnections and external PCBs and bus-bars are necessary to benefit from Silicon Carbide (SiC) power devices, which allow inherently very fast switching transitions. In this paper, a comprehensive modeling procedure for highly accurate virtual dynamic characterization of discrete SiC power devices is described taking into account the 3D geometry of the internal and external interconnections of package as input. The modeling requirements are discussed on an example of a commercial 1.2 kV, 80 mΩ SiC Power MOSFET in a standard TO-247 package (Cree C2M0080120D). The software tools, Simplorer, Saber, Q3D and LTSpice, commonly used for modeling and simulation of power modules, are evaluated with respect to their modeling capabilities for SiC devices.\",\"PeriodicalId\":202561,\"journal\":{\"name\":\"2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ISPSD.2017.7988984\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ISPSD.2017.7988984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Highly accurate virtual dynamic characterization of discrete SiC power devices
Optimized low-inductive layouting of the package interconnections and external PCBs and bus-bars are necessary to benefit from Silicon Carbide (SiC) power devices, which allow inherently very fast switching transitions. In this paper, a comprehensive modeling procedure for highly accurate virtual dynamic characterization of discrete SiC power devices is described taking into account the 3D geometry of the internal and external interconnections of package as input. The modeling requirements are discussed on an example of a commercial 1.2 kV, 80 mΩ SiC Power MOSFET in a standard TO-247 package (Cree C2M0080120D). The software tools, Simplorer, Saber, Q3D and LTSpice, commonly used for modeling and simulation of power modules, are evaluated with respect to their modeling capabilities for SiC devices.