用中心复合设计优化3D打印胶凝材料的化学外加剂

Mingyang Li, Yiwei Weng, Zhixin Liu, Dong Zhang, T. Wong
{"title":"用中心复合设计优化3D打印胶凝材料的化学外加剂","authors":"Mingyang Li, Yiwei Weng, Zhixin Liu, Dong Zhang, T. Wong","doi":"10.18063/msam.v1i3.16","DOIUrl":null,"url":null,"abstract":"Printability of 3D printable cementitious materials is related to material rheological properties, and is affected and controlled by modern concrete chemical admixtures. In this work, the influence of several chemical admixtures including superplasticizer, retarder, and accelerator on the rheological characteristics of printable materials was investigated using central composite design (CCD). Twenty test points with varying dosages of chemical admixtures were performed to evaluate the primary effects of chemical admixtures and their combined interactive effects on the rheological properties. The results indicate that with the increase of retarder or superplasticizer dosage, all rheological parameters decrease while accelerator possesses an opposite impact. The rheological properties are negatively proportional to the combined interactive effect of retarder and accelerator. The combined interactive effect of retarder and superplasticizer positively affects dynamic yield stress, plastic viscosity, and thixotropy, while it negatively impacts static yield stress. The combined interactive effect of accelerator and retarder positively affects the yield stress, whereas it negatively influences the plastic viscosity and thixotropy. The results indicate that the CCD is an efficient method to find the desirable formulation within a given boundary.","PeriodicalId":422581,"journal":{"name":"Materials Science in Additive Manufacturing","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing of chemical admixtures for 3D printable cementitious materials by central composite design\",\"authors\":\"Mingyang Li, Yiwei Weng, Zhixin Liu, Dong Zhang, T. Wong\",\"doi\":\"10.18063/msam.v1i3.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Printability of 3D printable cementitious materials is related to material rheological properties, and is affected and controlled by modern concrete chemical admixtures. In this work, the influence of several chemical admixtures including superplasticizer, retarder, and accelerator on the rheological characteristics of printable materials was investigated using central composite design (CCD). Twenty test points with varying dosages of chemical admixtures were performed to evaluate the primary effects of chemical admixtures and their combined interactive effects on the rheological properties. The results indicate that with the increase of retarder or superplasticizer dosage, all rheological parameters decrease while accelerator possesses an opposite impact. The rheological properties are negatively proportional to the combined interactive effect of retarder and accelerator. The combined interactive effect of retarder and superplasticizer positively affects dynamic yield stress, plastic viscosity, and thixotropy, while it negatively impacts static yield stress. The combined interactive effect of accelerator and retarder positively affects the yield stress, whereas it negatively influences the plastic viscosity and thixotropy. The results indicate that the CCD is an efficient method to find the desirable formulation within a given boundary.\",\"PeriodicalId\":422581,\"journal\":{\"name\":\"Materials Science in Additive Manufacturing\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science in Additive Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18063/msam.v1i3.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Additive Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18063/msam.v1i3.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

3D可打印胶凝材料的可打印性与材料流变特性有关,受现代混凝土化学外加剂的影响和控制。本文采用中心复合设计(CCD)研究了几种化学外加剂(包括高效减水剂、缓凝剂和促进剂)对可印刷材料流变特性的影响。在20个试验点进行了不同剂量的化学外加剂的试验,以评估化学外加剂对流变性能的主要影响及其综合相互作用。结果表明,随着缓凝剂和高效减水剂用量的增加,各流变性参数均降低,而促进剂的影响相反。其流变性能与缓速剂和加速剂的共同作用成反比。缓速剂和高效减水剂的联合作用对动态屈服应力、塑性粘度和触变性有积极影响,而对静态屈服应力有消极影响。促进剂和缓速剂的共同作用对屈服应力有积极影响,而对塑性粘度和触变性有消极影响。结果表明,CCD是在给定边界内寻找理想公式的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing of chemical admixtures for 3D printable cementitious materials by central composite design
Printability of 3D printable cementitious materials is related to material rheological properties, and is affected and controlled by modern concrete chemical admixtures. In this work, the influence of several chemical admixtures including superplasticizer, retarder, and accelerator on the rheological characteristics of printable materials was investigated using central composite design (CCD). Twenty test points with varying dosages of chemical admixtures were performed to evaluate the primary effects of chemical admixtures and their combined interactive effects on the rheological properties. The results indicate that with the increase of retarder or superplasticizer dosage, all rheological parameters decrease while accelerator possesses an opposite impact. The rheological properties are negatively proportional to the combined interactive effect of retarder and accelerator. The combined interactive effect of retarder and superplasticizer positively affects dynamic yield stress, plastic viscosity, and thixotropy, while it negatively impacts static yield stress. The combined interactive effect of accelerator and retarder positively affects the yield stress, whereas it negatively influences the plastic viscosity and thixotropy. The results indicate that the CCD is an efficient method to find the desirable formulation within a given boundary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信