渐进式混合滤波下二类广义Logistic分布的推理

M. Azizpour, A. Asgharzadeh
{"title":"渐进式混合滤波下二类广义Logistic分布的推理","authors":"M. Azizpour, A. Asgharzadeh","doi":"10.29252/JSRI.14.2.189","DOIUrl":null,"url":null,"abstract":". This article presents the analysis of the Type-II hybrid progressively censored data when the lifetime distributions of the items follow Type-II generalized logistic distribution. Maximum likelihood estimators (MLEs) are investigated for estimating the location and scale parameters. It is observed that the MLEs can not be obtained in explicit forms. We provide the approximate maximum likelihood estimators (AMLEs) by appropriately approximating the likelihood equations. Asymptotic confidence intervals based on MLEs and AMLEs and one bootstrap confidence interval are proposed. Estimation of the shape parameter is also discussed. Monte Carlo simula-tions are performed to compare the performances of the different methods and two real data sets have been analyzed for illustrative purposes.","PeriodicalId":422124,"journal":{"name":"Journal of Statistical Research of Iran","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Inference for the Type-II Generalized Logistic Distribution with Progressive Hybrid Censoring\",\"authors\":\"M. Azizpour, A. Asgharzadeh\",\"doi\":\"10.29252/JSRI.14.2.189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". This article presents the analysis of the Type-II hybrid progressively censored data when the lifetime distributions of the items follow Type-II generalized logistic distribution. Maximum likelihood estimators (MLEs) are investigated for estimating the location and scale parameters. It is observed that the MLEs can not be obtained in explicit forms. We provide the approximate maximum likelihood estimators (AMLEs) by appropriately approximating the likelihood equations. Asymptotic confidence intervals based on MLEs and AMLEs and one bootstrap confidence interval are proposed. Estimation of the shape parameter is also discussed. Monte Carlo simula-tions are performed to compare the performances of the different methods and two real data sets have been analyzed for illustrative purposes.\",\"PeriodicalId\":422124,\"journal\":{\"name\":\"Journal of Statistical Research of Iran\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Research of Iran\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29252/JSRI.14.2.189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Research of Iran","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29252/JSRI.14.2.189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

. 本文分析了当项目的寿命分布遵循ii型广义logistic分布时的ii型混合渐进式截尾数据。研究了用极大似然估计器估计位置和尺度参数的方法。可以观察到,mle不能以显式形式得到。我们通过适当地逼近似然方程来提供近似最大似然估计量(AMLEs)。提出了基于最大似然值和最大似然值的渐近置信区间和一个自举置信区间。对形状参数的估计也进行了讨论。为了比较不同方法的性能,我们进行了蒙特卡罗模拟,并对两个真实数据集进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inference for the Type-II Generalized Logistic Distribution with Progressive Hybrid Censoring
. This article presents the analysis of the Type-II hybrid progressively censored data when the lifetime distributions of the items follow Type-II generalized logistic distribution. Maximum likelihood estimators (MLEs) are investigated for estimating the location and scale parameters. It is observed that the MLEs can not be obtained in explicit forms. We provide the approximate maximum likelihood estimators (AMLEs) by appropriately approximating the likelihood equations. Asymptotic confidence intervals based on MLEs and AMLEs and one bootstrap confidence interval are proposed. Estimation of the shape parameter is also discussed. Monte Carlo simula-tions are performed to compare the performances of the different methods and two real data sets have been analyzed for illustrative purposes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信