基于测量的多变量自回归模型电力系统动态预测

Changgang Li, Yong Liu, K. Sun, Yilu Liu, N. Bhatt
{"title":"基于测量的多变量自回归模型电力系统动态预测","authors":"Changgang Li, Yong Liu, K. Sun, Yilu Liu, N. Bhatt","doi":"10.1109/TDC.2014.6863288","DOIUrl":null,"url":null,"abstract":"Power system dynamics prediction is important for online situation awareness and adaptive control. Model-based simulation is not applicable for dynamics prediction due to constant change of network configuration. With more and more Phasor Measurement Units (PMU), power system dynamics can be studied with pure measurement data. This paper proposes a dynamics prediction method based on measurement data. A mulit-input multi-output Multivariate AutoRegressive model (MAR) is developed and dynamics prediction procedure is proposed. Both simulation data and field measurement data are tested. Examples show that the proposed method can predict power system dynamics with high accuracy for simulation data and give reasonable result for measurement data. It provides an alternative approach to study power system dynamics.","PeriodicalId":161074,"journal":{"name":"2014 IEEE PES T&D Conference and Exposition","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Measurement based power system dynamics prediction with multivariate AutoRegressive Model\",\"authors\":\"Changgang Li, Yong Liu, K. Sun, Yilu Liu, N. Bhatt\",\"doi\":\"10.1109/TDC.2014.6863288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power system dynamics prediction is important for online situation awareness and adaptive control. Model-based simulation is not applicable for dynamics prediction due to constant change of network configuration. With more and more Phasor Measurement Units (PMU), power system dynamics can be studied with pure measurement data. This paper proposes a dynamics prediction method based on measurement data. A mulit-input multi-output Multivariate AutoRegressive model (MAR) is developed and dynamics prediction procedure is proposed. Both simulation data and field measurement data are tested. Examples show that the proposed method can predict power system dynamics with high accuracy for simulation data and give reasonable result for measurement data. It provides an alternative approach to study power system dynamics.\",\"PeriodicalId\":161074,\"journal\":{\"name\":\"2014 IEEE PES T&D Conference and Exposition\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE PES T&D Conference and Exposition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TDC.2014.6863288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE PES T&D Conference and Exposition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TDC.2014.6863288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

电力系统动态预测对在线态势感知和自适应控制具有重要意义。由于网络结构的不断变化,基于模型的仿真并不适用于动态预测。随着相量测量单元(PMU)的不断增多,可以用纯测量数据来研究电力系统动力学。提出了一种基于实测数据的动态预测方法。建立了一种多输入多输出的多元自回归模型,并提出了动态预测方法。对仿真数据和现场实测数据进行了验证。算例表明,该方法能对仿真数据进行高精度的电力系统动态预测,对实测数据给出合理的预测结果。它为研究电力系统动力学提供了另一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measurement based power system dynamics prediction with multivariate AutoRegressive Model
Power system dynamics prediction is important for online situation awareness and adaptive control. Model-based simulation is not applicable for dynamics prediction due to constant change of network configuration. With more and more Phasor Measurement Units (PMU), power system dynamics can be studied with pure measurement data. This paper proposes a dynamics prediction method based on measurement data. A mulit-input multi-output Multivariate AutoRegressive model (MAR) is developed and dynamics prediction procedure is proposed. Both simulation data and field measurement data are tested. Examples show that the proposed method can predict power system dynamics with high accuracy for simulation data and give reasonable result for measurement data. It provides an alternative approach to study power system dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信