{"title":"等离子体增强化学气相沉积石墨烯带隙的变化","authors":"Chang-Soo Park, Hee-Sang Kim","doi":"10.31031/acsr.2020.02.000529","DOIUrl":null,"url":null,"abstract":"Graphene is a two-dimensional monolayer with linear dispersion relation near the Dirac point and has attracted much interest owing to its superb material properties, such as very high mobility of 10,000 cm2/Vs at room temperature and quantum hall effect to promise for the potential in nanoelectronics [1-4]. However, graphene is a semimetal without an energy band gap which is required to be used as an electronic transistor. Recent studies have shown that band gap is formed at various situation, in nanoribbons, [5] bias-applied, and [6] strained or molecule-doped graphene [7,8]. Though the band gaps were generated in various structures, the control of the electrical properties is still a challenge. On the other hand, defects and impurities in graphene are important in electrical transport, because scattering is a hurdle in carrier transport in graphene, making the modulation of graphene transport quite important for physical and device application. In particular, defects in graphene have been intensely studied because quasi-localized states near the Fermi energy can be induced due to vacancy [9,10]. Here, we report that band gap engineering has been achieved by PECVD growth and plasma treatment can induce modulation of the defective properties of graphene. The graphene films were synthesized by plasma-enhanced chemical vapor deposition (PECVD) at 950 °C on sapphire substrate without catalyst, and the radio frequency plasma power was fixed at 150W. Carrier gas was argon (300sccm) and hydrogen (30sccm). The hydrocarbon, CH4 (1sccm) was used as a source precursor during the growth. Growth time was adjusted from 5min to 60min. Pristine graphene was identified as a bilayer using an optical microscope and Raman signal. Raman spectra of the graphene films were measured at an excitation of 514.5nm at room temperature using a spectrometer (Horiba Jobin-Yvon, HR800UV). The electrical transport was characterized as a function of temperature using low temperature measurement system (Sungwoo Instrument & Sumitomo). Crimson Publishers Wings to the Research Mini Review","PeriodicalId":175500,"journal":{"name":"Annals of Chemical Science Research","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variation of Band Gap in Graphene Grown by Plasma Enhanced Chemical Vapor Deposition\",\"authors\":\"Chang-Soo Park, Hee-Sang Kim\",\"doi\":\"10.31031/acsr.2020.02.000529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphene is a two-dimensional monolayer with linear dispersion relation near the Dirac point and has attracted much interest owing to its superb material properties, such as very high mobility of 10,000 cm2/Vs at room temperature and quantum hall effect to promise for the potential in nanoelectronics [1-4]. However, graphene is a semimetal without an energy band gap which is required to be used as an electronic transistor. Recent studies have shown that band gap is formed at various situation, in nanoribbons, [5] bias-applied, and [6] strained or molecule-doped graphene [7,8]. Though the band gaps were generated in various structures, the control of the electrical properties is still a challenge. On the other hand, defects and impurities in graphene are important in electrical transport, because scattering is a hurdle in carrier transport in graphene, making the modulation of graphene transport quite important for physical and device application. In particular, defects in graphene have been intensely studied because quasi-localized states near the Fermi energy can be induced due to vacancy [9,10]. Here, we report that band gap engineering has been achieved by PECVD growth and plasma treatment can induce modulation of the defective properties of graphene. The graphene films were synthesized by plasma-enhanced chemical vapor deposition (PECVD) at 950 °C on sapphire substrate without catalyst, and the radio frequency plasma power was fixed at 150W. Carrier gas was argon (300sccm) and hydrogen (30sccm). The hydrocarbon, CH4 (1sccm) was used as a source precursor during the growth. Growth time was adjusted from 5min to 60min. Pristine graphene was identified as a bilayer using an optical microscope and Raman signal. Raman spectra of the graphene films were measured at an excitation of 514.5nm at room temperature using a spectrometer (Horiba Jobin-Yvon, HR800UV). The electrical transport was characterized as a function of temperature using low temperature measurement system (Sungwoo Instrument & Sumitomo). Crimson Publishers Wings to the Research Mini Review\",\"PeriodicalId\":175500,\"journal\":{\"name\":\"Annals of Chemical Science Research\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Chemical Science Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31031/acsr.2020.02.000529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Chemical Science Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31031/acsr.2020.02.000529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Variation of Band Gap in Graphene Grown by Plasma Enhanced Chemical Vapor Deposition
Graphene is a two-dimensional monolayer with linear dispersion relation near the Dirac point and has attracted much interest owing to its superb material properties, such as very high mobility of 10,000 cm2/Vs at room temperature and quantum hall effect to promise for the potential in nanoelectronics [1-4]. However, graphene is a semimetal without an energy band gap which is required to be used as an electronic transistor. Recent studies have shown that band gap is formed at various situation, in nanoribbons, [5] bias-applied, and [6] strained or molecule-doped graphene [7,8]. Though the band gaps were generated in various structures, the control of the electrical properties is still a challenge. On the other hand, defects and impurities in graphene are important in electrical transport, because scattering is a hurdle in carrier transport in graphene, making the modulation of graphene transport quite important for physical and device application. In particular, defects in graphene have been intensely studied because quasi-localized states near the Fermi energy can be induced due to vacancy [9,10]. Here, we report that band gap engineering has been achieved by PECVD growth and plasma treatment can induce modulation of the defective properties of graphene. The graphene films were synthesized by plasma-enhanced chemical vapor deposition (PECVD) at 950 °C on sapphire substrate without catalyst, and the radio frequency plasma power was fixed at 150W. Carrier gas was argon (300sccm) and hydrogen (30sccm). The hydrocarbon, CH4 (1sccm) was used as a source precursor during the growth. Growth time was adjusted from 5min to 60min. Pristine graphene was identified as a bilayer using an optical microscope and Raman signal. Raman spectra of the graphene films were measured at an excitation of 514.5nm at room temperature using a spectrometer (Horiba Jobin-Yvon, HR800UV). The electrical transport was characterized as a function of temperature using low temperature measurement system (Sungwoo Instrument & Sumitomo). Crimson Publishers Wings to the Research Mini Review