在电网配电系统中使用 Hopfield 神经网络改善电能质量

Pranshu Bansal, Prashant Bharati, Sambhav Jeswani, Ankita Arora
{"title":"在电网配电系统中使用 Hopfield 神经网络改善电能质量","authors":"Pranshu Bansal, Prashant Bharati, Sambhav Jeswani, Ankita Arora","doi":"10.1109/PIECON56912.2023.10085879","DOIUrl":null,"url":null,"abstract":"The objective of this study revolves around the power quality enhancement in grid connected distribution systems through Hopfield Neural Network (HNN) algorithm. The distribution system is linked to a non-linear load resulting in the generation of harmonics in the grid current. Distribution Static Synchronous Compensator (DSTATCOM) is implemented to mitigate harmonics. DSTATCOM contains IGBTs, that require firing signals to operate. The control algorithm provides the gate pulse by comparing grid and reference grid current; and aims at removing grid current harmonics for the improvement of system’s performance. A comparative analysis of the HNN algorithm is executed with Self Tuning Filter and Synchronous Reference Frame Theory where metrics such as harmonic content, settling time and oscillations are taken under consideration. The distribution system and different control algorithms incorporated by the DSTATCOM have been simulated using MATLAB 2018b Simulink software.","PeriodicalId":182428,"journal":{"name":"2023 International Conference on Power, Instrumentation, Energy and Control (PIECON)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Power Quality Improvement using Hopfield Neural Network in Grid Distribution System\",\"authors\":\"Pranshu Bansal, Prashant Bharati, Sambhav Jeswani, Ankita Arora\",\"doi\":\"10.1109/PIECON56912.2023.10085879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this study revolves around the power quality enhancement in grid connected distribution systems through Hopfield Neural Network (HNN) algorithm. The distribution system is linked to a non-linear load resulting in the generation of harmonics in the grid current. Distribution Static Synchronous Compensator (DSTATCOM) is implemented to mitigate harmonics. DSTATCOM contains IGBTs, that require firing signals to operate. The control algorithm provides the gate pulse by comparing grid and reference grid current; and aims at removing grid current harmonics for the improvement of system’s performance. A comparative analysis of the HNN algorithm is executed with Self Tuning Filter and Synchronous Reference Frame Theory where metrics such as harmonic content, settling time and oscillations are taken under consideration. The distribution system and different control algorithms incorporated by the DSTATCOM have been simulated using MATLAB 2018b Simulink software.\",\"PeriodicalId\":182428,\"journal\":{\"name\":\"2023 International Conference on Power, Instrumentation, Energy and Control (PIECON)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Power, Instrumentation, Energy and Control (PIECON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIECON56912.2023.10085879\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Power, Instrumentation, Energy and Control (PIECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIECON56912.2023.10085879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目标是通过 Hopfield 神经网络 (HNN) 算法提高并网配电系统的电能质量。配电系统与非线性负载相连,导致电网电流中产生谐波。采用配电静态同步补偿器 (DSTATCOM) 来缓解谐波。DSTATCOM 包含 IGBT,需要点火信号才能工作。控制算法通过比较电网电流和参考电网电流来提供栅极脉冲,目的是消除电网电流谐波,提高系统性能。HNN 算法与自调谐滤波器和同步参考框架理论进行了比较分析,其中考虑了谐波含量、稳定时间和振荡等指标。配电系统和 DSTATCOM 所采用的不同控制算法已使用 MATLAB 2018b Simulink 软件进行了模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Power Quality Improvement using Hopfield Neural Network in Grid Distribution System
The objective of this study revolves around the power quality enhancement in grid connected distribution systems through Hopfield Neural Network (HNN) algorithm. The distribution system is linked to a non-linear load resulting in the generation of harmonics in the grid current. Distribution Static Synchronous Compensator (DSTATCOM) is implemented to mitigate harmonics. DSTATCOM contains IGBTs, that require firing signals to operate. The control algorithm provides the gate pulse by comparing grid and reference grid current; and aims at removing grid current harmonics for the improvement of system’s performance. A comparative analysis of the HNN algorithm is executed with Self Tuning Filter and Synchronous Reference Frame Theory where metrics such as harmonic content, settling time and oscillations are taken under consideration. The distribution system and different control algorithms incorporated by the DSTATCOM have been simulated using MATLAB 2018b Simulink software.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信