{"title":"基于内容的网站人口统计属性预测方法","authors":"Santosh Kabbur, Eui-Hong Han, G. Karypis","doi":"10.1109/ICDM.2010.97","DOIUrl":null,"url":null,"abstract":"Demographic information plays an important role in gaining valuable insights about a web-site's user-base and is used extensively to target online advertisements and promotions. This paper investigates machine-learning approaches for predicting the demographic attributes of web-sites using information derived from their content and their hyper linked structure and not relying on any information directly or indirectly obtained from the web-site's users. Such methods are important because users are becoming increasingly more concerned about sharing their personal and behavioral information on the Internet. Regression-based approaches are developed and studied for predicting demographic attributes that utilize different content-derived features, different ways of building the prediction models, and different ways of aggregating web-page level predictions that take into account the web's hyper linked structure. In addition, a matrix-approximation based approach is developed for coupling the predictions of individual regression models into a model designed to predict the probability mass function of the attribute. Extensive experiments show that these methods are able to achieve an RMSE of 8-10% and provide insights on how to best train and apply such models.","PeriodicalId":294061,"journal":{"name":"2010 IEEE International Conference on Data Mining","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Content-Based Methods for Predicting Web-Site Demographic Attributes\",\"authors\":\"Santosh Kabbur, Eui-Hong Han, G. Karypis\",\"doi\":\"10.1109/ICDM.2010.97\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Demographic information plays an important role in gaining valuable insights about a web-site's user-base and is used extensively to target online advertisements and promotions. This paper investigates machine-learning approaches for predicting the demographic attributes of web-sites using information derived from their content and their hyper linked structure and not relying on any information directly or indirectly obtained from the web-site's users. Such methods are important because users are becoming increasingly more concerned about sharing their personal and behavioral information on the Internet. Regression-based approaches are developed and studied for predicting demographic attributes that utilize different content-derived features, different ways of building the prediction models, and different ways of aggregating web-page level predictions that take into account the web's hyper linked structure. In addition, a matrix-approximation based approach is developed for coupling the predictions of individual regression models into a model designed to predict the probability mass function of the attribute. Extensive experiments show that these methods are able to achieve an RMSE of 8-10% and provide insights on how to best train and apply such models.\",\"PeriodicalId\":294061,\"journal\":{\"name\":\"2010 IEEE International Conference on Data Mining\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2010.97\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2010.97","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Content-Based Methods for Predicting Web-Site Demographic Attributes
Demographic information plays an important role in gaining valuable insights about a web-site's user-base and is used extensively to target online advertisements and promotions. This paper investigates machine-learning approaches for predicting the demographic attributes of web-sites using information derived from their content and their hyper linked structure and not relying on any information directly or indirectly obtained from the web-site's users. Such methods are important because users are becoming increasingly more concerned about sharing their personal and behavioral information on the Internet. Regression-based approaches are developed and studied for predicting demographic attributes that utilize different content-derived features, different ways of building the prediction models, and different ways of aggregating web-page level predictions that take into account the web's hyper linked structure. In addition, a matrix-approximation based approach is developed for coupling the predictions of individual regression models into a model designed to predict the probability mass function of the attribute. Extensive experiments show that these methods are able to achieve an RMSE of 8-10% and provide insights on how to best train and apply such models.