基于图像感知哈希编码的无监督硬例提取

Jie Bai, Lianqing Zheng, Sihan Chen, Libo Huang
{"title":"基于图像感知哈希编码的无监督硬例提取","authors":"Jie Bai, Lianqing Zheng, Sihan Chen, Libo Huang","doi":"10.1145/3448734.3450910","DOIUrl":null,"url":null,"abstract":"The camera-based object detection algorithm is essential in autonomous driving. If the object is not detected when the vehicle is driving on the highway, it will cause a severe safety hazard. To evaluate and improve the object detection model, we propose a hard case extraction algorithm based on image perceptual hash encoding. We encode the object regions of each frame and then match them in adjacent frames. We optimize the search algorithm to achieve fast matching, improving efficiency by about ten times while ensuring accuracy. Then, we extract hard frames from a large number of unlabeled video frames, and the experimental results show that the accuracy is 92%. It is of great significance to evaluate and improve the object detection model and expand effective data.","PeriodicalId":105999,"journal":{"name":"The 2nd International Conference on Computing and Data Science","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsupervised Hard Case Extraction Based on Image Perceptual Hash Encoding\",\"authors\":\"Jie Bai, Lianqing Zheng, Sihan Chen, Libo Huang\",\"doi\":\"10.1145/3448734.3450910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The camera-based object detection algorithm is essential in autonomous driving. If the object is not detected when the vehicle is driving on the highway, it will cause a severe safety hazard. To evaluate and improve the object detection model, we propose a hard case extraction algorithm based on image perceptual hash encoding. We encode the object regions of each frame and then match them in adjacent frames. We optimize the search algorithm to achieve fast matching, improving efficiency by about ten times while ensuring accuracy. Then, we extract hard frames from a large number of unlabeled video frames, and the experimental results show that the accuracy is 92%. It is of great significance to evaluate and improve the object detection model and expand effective data.\",\"PeriodicalId\":105999,\"journal\":{\"name\":\"The 2nd International Conference on Computing and Data Science\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2nd International Conference on Computing and Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3448734.3450910\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2nd International Conference on Computing and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3448734.3450910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在自动驾驶中,基于摄像头的目标检测算法是必不可少的。如果车辆在高速公路上行驶时没有检测到该物体,将会造成严重的安全隐患。为了评估和改进目标检测模型,我们提出了一种基于图像感知哈希编码的硬案例提取算法。我们对每帧的目标区域进行编码,然后在相邻的帧中进行匹配。我们优化了搜索算法,实现了快速匹配,在保证准确性的同时,效率提高了十倍左右。然后,我们从大量未标记的视频帧中提取硬帧,实验结果表明,准确率达到92%。这对评价和改进目标检测模型,扩展有效数据具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised Hard Case Extraction Based on Image Perceptual Hash Encoding
The camera-based object detection algorithm is essential in autonomous driving. If the object is not detected when the vehicle is driving on the highway, it will cause a severe safety hazard. To evaluate and improve the object detection model, we propose a hard case extraction algorithm based on image perceptual hash encoding. We encode the object regions of each frame and then match them in adjacent frames. We optimize the search algorithm to achieve fast matching, improving efficiency by about ten times while ensuring accuracy. Then, we extract hard frames from a large number of unlabeled video frames, and the experimental results show that the accuracy is 92%. It is of great significance to evaluate and improve the object detection model and expand effective data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信