基于小波变换和神经网络的人脸识别

Yu Fan, W. Zhu, Guangzhou Bai, Taibo Li
{"title":"基于小波变换和神经网络的人脸识别","authors":"Yu Fan, W. Zhu, Guangzhou Bai, Taibo Li","doi":"10.1109/IMCEC.2016.7867481","DOIUrl":null,"url":null,"abstract":"On the basis of explaining the principles of wavelet transform, neural network, and wavelet neural network, the paper examines two methods of face recognition: one is based on neural network, the other is based on wavelet neural network. The paper also offers the features and differences based on algorithmic simulation. The result of the stimulation reveals that face recognition using wavelet neural network can largely increase the accuracy rate.","PeriodicalId":218222,"journal":{"name":"2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Face recognition based on wavelet transform and neural network\",\"authors\":\"Yu Fan, W. Zhu, Guangzhou Bai, Taibo Li\",\"doi\":\"10.1109/IMCEC.2016.7867481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On the basis of explaining the principles of wavelet transform, neural network, and wavelet neural network, the paper examines two methods of face recognition: one is based on neural network, the other is based on wavelet neural network. The paper also offers the features and differences based on algorithmic simulation. The result of the stimulation reveals that face recognition using wavelet neural network can largely increase the accuracy rate.\",\"PeriodicalId\":218222,\"journal\":{\"name\":\"2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC)\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMCEC.2016.7867481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCEC.2016.7867481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在阐述小波变换、神经网络和小波神经网络原理的基础上,研究了基于神经网络和基于小波神经网络的两种人脸识别方法。在算法仿真的基础上,给出了两者的特点和区别。仿真结果表明,利用小波神经网络进行人脸识别可以大大提高准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Face recognition based on wavelet transform and neural network
On the basis of explaining the principles of wavelet transform, neural network, and wavelet neural network, the paper examines two methods of face recognition: one is based on neural network, the other is based on wavelet neural network. The paper also offers the features and differences based on algorithmic simulation. The result of the stimulation reveals that face recognition using wavelet neural network can largely increase the accuracy rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信